Abstract:
When an obstacle is sensed on a side of a vehicle, the future position of the vehicle after a prescribed time is predicted. When the predicted vehicle future position reaches a prescribed lateral position in the lane width direction, a decision to start a control is made, and the vehicle is controlled in a direction to prevent it from coming too close to the obstacle. If a state occurs in which the obstacle is sensed after not being sensed (i.e., it is first sensed), a decision to start the control is suppressed.
Abstract:
An automotive lane deviation prevention (LDP) apparatus includes a control unit detecting whether a host vehicle is in a specific state where the host vehicle is traveling on road-surface irregularities formed on or close to a lane marking line. The control unit actively decelerates the host vehicle when the host vehicle is in the specific state where the host vehicle is traveling on the road-surface irregularities.
Abstract:
A lane departure avoidance system is provided with a rumble strip sensing device and a lateral lane departure rate determining component. The rumble strip sensing device is configured to detect an input from a rumble strip to a vehicle wheel that is indicative of a rumble strip engagement amount. The lateral lane departure rate determining component is configured to determine a lateral rate of lane departure of a vehicle based on a detection result of the rumble strip sensing device.
Abstract:
In a vehicle dynamics control apparatus capable of balancing a vehicle dynamics stability control system and a lane deviation prevention control system, a cooperative control section is provided to make a cooperative control between lane deviation prevention control (LDP) and vehicle dynamics stability control (VDC). When a direction of yawing motion created by LDP control is opposite to a direction of yawing motion created by VDC control, the cooperative control section puts a higher priority on VDC control rather than LDP control. Conversely when the direction of yawing motion created by LDP control is identical to the direction of yawing motion created by VDC control, a higher one of the LDP desired yaw moment and the VDC desired yaw moment is selected as a final desired yaw moment, to prevent over-control, while keeping the effects obtained by both of VDC control and LDP control.
Abstract:
There is provided a lane deviation prevention apparatus which can make a lane deviation prediction judgment more accurately. The lane deviation prevention apparatus includes driving lane shape recognition device to detect a lane mark on a road included in a front image within a lane mark detection distance range and to recognize a shape of a driving lane boundary, and a deviation prediction judgment device that judges, based on the shape of the driving lane boundary, whether the vehicle deviates from a driving lane after a previously set deviation prediction time and outputs a deviation prevention output in a case where it is judged that the vehicle deviates, and the driving lane shape recognition device that dynamically sets the position of the lane mark detection distance range in accordance with a vehicle speed of the vehicle and the deviation prediction time.
Abstract:
A lane departure prevention system comprises a traveling status detecting unit for detecting current lateral displacement and current yaw angle of a vehicle relative to a lane of travel, a departure detecting unit for detecting whether the vehicle is tending to depart from the lane of travel on the basis of current lateral displacement of the vehicle relative to the lane of travel as detected by the traveling status detecting unit; and a departure avoidance control unit for controlling the vehicle to avoid lane departure when the departure detecting unit detects that the vehicle is tending to depart from the lane of travel. The departure avoidance control unit calculating the extent of control necessary to avoid lane departure on the basis of current yaw angle of the vehicle detected by the traveling status detecting unit. Provision is made for preventing lane departure on a curving as well as a straight road.
Abstract:
In a vehicle dynamics control apparatus capable of balancing a vehicle dynamics stability control system and a lane deviation prevention control system, a cooperative control section is provided to make a cooperative control between lane deviation prevention control (LDP) and vehicle dynamics stability control (VDC). When a direction of yawing motion created by LDP control is opposite to a direction of yawing motion created by VDC control, the cooperative control section puts a higher priority on VDC control rather than LDP control. Conversely when the direction of yawing motion created by LDP control is identical to the direction of yawing motion created by VDC control, a higher one of the LDP desired yaw moment and the VDC desired yaw moment is selected as a final desired yaw moment, to prevent over-control, while keeping the effects obtained by both of VDC control and LDP control.
Abstract:
In lane keep control apparatus and method for an automotive vehicle, a deceleration controlled variable is calculated on the basis of a state of a tendency of a vehicular deviation from a traffic lane on which the vehicle is traveling and a braking force acted upon each of driven wheels of the vehicle is controlled on the basis of the calculated deceleration controlled variable.
Abstract:
A lane deviation avoidance system for an adaptive cruise control system equipped vehicle includes an electronic control unit that executes a host vehicle's lane deviation avoidance control in which a change in vehicle dynamic behavior occurs in a direction that avoids the host vehicle from deviating from a driving lane when there is a possibility of the host vehicle's lane deviation from the driving lane. The control unit puts a priority on the lane deviation avoidance control by limiting a driving force acting on the host vehicle, when there is the possibility of the host vehicle's lane deviation from the driving lane.
Abstract:
A driving assist system for assisting effort by an operator to operate a vehicle in traveling is provided. The driving assist system receives data including information on vehicle state and information on environment in a field around the vehicle. A controller, mounted to the vehicle, determines future environment in the field, makes an operator response plan in response to the determined future environment to determine command, and generates the command. The operator response plan prompts the operator to operating the vehicle in a desired manner for the determined future environment. At least one actuator, mounted to the vehicle, prompts the operator in response to the command to operating the vehicle in the desired manner.