Abstract:
System for evaluating the traffic environment of a motor vehicle and for influencing the speed of the motor vehicle in its own traffic lane, comprising an electronic control unit (ECU), which is connected to a signal transmitter that produces a signal characteristic of the desired speed of the motor vehicle, a signal transmitter that produces a signal characteristic of the yaw of the motor vehicle about its vertical axis, a signal transmitter that produces a signal characteristic of the articles situated, in the direction of travel of the motor vehicle, in front of the motor vehicle in terms of their spacing and orientation relative to the motor vehicle and which reproduces the speed relative to the speed of the system motor vehicle and/or the spacing relative to the system motor vehicle and/or the angular offset or the cross track distance relative to the vehicle longitudinal axis of the system motor vehicle, and a signal transmitter that produces a signal characteristic of the speed of at least one wheel of the motor vehicle, and which is connected to at least one control device, which influences the performance of the motor vehicle, in order to supply said device with output signals derived from the performance of the motor vehicle situated in front of the system motor vehicle, in which in the electronic control unit (ECU) the width of the system motor vehicle traffic lane is modified in dependence upon the distance of articles detected in the space in front of the system motor vehicle from the system motor vehicle, wherein the width in the close range and in the remote range is smaller than in the medium range.
Abstract:
An automotive lane deviation prevention (LDP) apparatus includes a control unit detecting whether a host vehicle is in a specific state where the host vehicle is traveling on road-surface irregularities formed on or close to a lane marking line. The control unit actively decelerates the host vehicle when the host vehicle is in the specific state where the host vehicle is traveling on the road-surface irregularities.
Abstract:
When a vehicle travels along a curve of a road, a target vehicle acceleration/deceleration that is used for accelerating/decelerating the vehicle to a target vehicle speed, which is set for the curve, is calculated. Based on a comparison between a present vehicle speed of the vehicle and the target vehicle speed, the vehicle is controlled such that an acceleration/deceleration of the vehicle coincides with the target vehicle acceleration/deceleration.
Abstract:
A lane deviation avoidance system for an adaptive cruise control system equipped vehicle includes an electronic control unit that executes a host vehicle's lane deviation avoidance control in which a change in vehicle dynamic behavior occurs in a direction that avoids the host vehicle from deviating from a driving lane when there is a possibility of the host vehicle's lane deviation from the driving lane. The control unit puts a priority on the lane deviation avoidance control by limiting a driving force acting on the host vehicle, when there is the possibility of the host vehicle's lane deviation from the driving lane.
Abstract:
In an automotive lane deviation avoidance system that prevents a host vehicle from deviating from its driving lane by correcting the host vehicle's course in a direction that avoids the host vehicle's lane deviation in the presence of a possibility of the host vehicle's lane deviation, the system calculates a desired yawing moment needed to avoid the host vehicle's lane deviation from the driving lane. The system compensates for the desired yawing moment by a correction factor or a gain, which is determined based on a throttle opening of the host vehicle.
Abstract:
A sensing system (10) for a vehicle (12) includes a single vision sensor (14) that has a position on the vehicle (12). The single vision sensor (14) detects an object (40) and generates an object detection signal. A controller (16) is coupled to the vision sensor (14) and generates a safety system signal in response to the position of the vision sensor (14) and the object detection signal.
Abstract:
A method of detecting a lane change of a subject vehicle (20), having a locating device (10) which uses angular resolution for locating vehicles (VEH1, VEH2, VEH3) traveling in front, and a device (44) for determining the yaw rate (ω0) of the subject vehicle. The angular velocity (ωi) of at least one vehicle traveling in front relative to the subject vehicle (20) is measured using the locating device (10), and a lane change signal (LC) indicating the lane change is formed by comparing the measured angular velocity (ωi) to the yaw rate (ω0) of the subject vehicle.
Abstract:
A vehicle warning system includes a vehicle having first and second outer zones and a passenger compartment. A first active safety system monitors the first outer zone and generates first warning signals. A second active safety system monitors the second outer zone and generates second warning signals. A vehicle audio output device includes a plurality of speakers that are located in the vehicle passenger compartment. The first warning signals are output to a one or more of said speakers of the vehicle audio output device at a first frequency. The second warning signals are output one or more of said speakers of the vehicle output audio device at a second frequency.
Abstract:
A near object detection (NOD) system includes a plurality of sensors, each of the sensors for providing detection coverage in a predetermined coverage zone and each of the sensors including a transmit antenna for transmitting a first RF signal, a receive antenna for receiving a second RF signal and means for sharing information between each of the plurality of sensors in the NOD system.
Abstract:
A device and a method are for monitoring misalignment of a distance sensor on a vehicle which represents a combination of two individual procedures. The two individual procedures are selected in such a way that one procedure has advantages in areas in which the other procedure functions disadvantageously, so that the weaknesses of one procedure may be compensated for by the strengths of the other procedure. Furthermore, with the aid of this combination, it may be decided with far greater certainty whether a misalignment is present which may be removed using suitable correcting measures, or whether an extreme misalignment is present, based on which the system must be switched off.