Abstract:
A method of fabricating doped quartz component is provided herein. In one embodiment, the doped quartz component is a yttrium doped quartz ring configured to support a substrate. In another embodiment, the doped quartz component is a yttrium and aluminum doped cover ring. In yet another embodiment, the doped quartz component is a yttrium, aluminum and nitrogen containing cover ring.
Abstract:
The invention starts from a known component of quartz glass for use in semiconductor manufacture, which component at least in a near-surface region shows a co-doping of a first dopant and of a second oxidic dopant, said second dopant containing one or more rare-earth metals in a concentration of 0.1-3% by wt. each (based on the total mass of SiO2 and dopant). Starting from this, to provide a quartz glass component for use in semiconductor manufacture in an environment with etching action, which component is distinguished by both high purity and high resistance to dry etching and avoids known drawbacks caused by co-doping with aluminum oxide, it is suggested according to the invention that the first dopant should be nitrogen and that the mean content of metastable hydroxyl groups of the quartz glass is less than 30 wtppm.
Abstract:
Cup-shaped porous silica preforms suitable for manufacture of large 24-inch crucibles used in Czochralski crystal-growing furnaces are produced by a unique electrophoretic casting process using a high-purity aqueous silica slip or slurry having a predetermined particle-size distribution, an average particle size of from 6 to 10 microns and a solids content of from 80 to 85 percent by weight. The slurry contains an electrolyte, such as ammonium hydroxide, has a pH of from 7.5 to 8.5, and can be wet milled at a pH of at least 7 in such manner as to provide the micronized silica particles with excellent electrophoretic mobility, thereby providing a superb process for economical mass production of large pure silica preforms using safe voltages, such as 20 to 40 volts. The electrophoretic casting apparatus can be of the type shown in FIGS. 1 and 2 and includes a permeable porous cup-shaped carbon-graphite mold (2) that serves as a positive anode and an internal reticulate or perforated cathode (3) of similar shape having a thin pervious cover means, such as the shroud 25, to prevent local dilution of the slurry at the cathode.
Abstract:
A composition represented by the formula Si1nullxGexO2(1nully)N1.33y, wherein x is from about 0.05 to about 0.6 and y is from about 0.14 to about 0.74 exhibits properties highly suited for use in fabricating waveguides for liquid crystal based optical devices. In particular, the compositions have an index of refraction of from about 1.6 to about 1.8 for light at a wavelength of 1550 nm, and/or a coefficient of thermal expansion of from about 2.5null10null6null C.null1 to about 5.0null10null6null C. null1. The compositions also have inherently low hydrogen content, and a high hydrogen permeability which allows better hydrogen removal by thermal annealing to provide a material which exhibits low optical losses and better etching properties than alternative materials.
Abstract:
A composition represented by the formula Si1−xGexO2(1−y)N1.33y, wherein x is from about 0.05 to about 0.6 and y is from about 0.14 to about 0.74 exhibits properties highly suited for use in fabricating waveguides for liquid crystal based optical devices. In particular, the compositions have an index of refraction of from about 1.6 to about 1.8 for light at a wavelength of 1550 nm, and/or a coefficient of thermal expansion of from about 2.5×10−6° C.−1 to about 5.0×10−6° C.−1. The compositions also have inherently low hydrogen content, and a high hydrogen permeability which allows better hydrogen removal by thermal annealing to provide a material which exhibits low optical losses and better etching properties than alternative materials.
Abstract:
The application discloses a number of unique sintered quartz glass products together with new silica compositions and processes for making and using such products. Nitrided clear and opaque nitrided quartz products are disclosed having incredible physical properties resulting from the incorporation of very small, but effective, amounts (e.g., 25 ppm or more) of chemically bound nitrogen. Opaque quartz glass heat shields with remarkable resistance to transmission of infrared radiation are disclosed which can have a high bubble population density, such as 80 to 120 per mm2. These heat shields make possible remarkable improvement in the performance of tube furnaces and other reactors used in processing silicon wafers and other electronic components.
Abstract translation:该申请公开了许多独特的烧结石英玻璃产品以及新的二氧化硅组合物和制备和使用这些产品的方法。 公开了氮化透明和不透明的氮化石英产物,其具有由于引入非常小但有效的化学键合氮的量(例如25ppm或更多)而产生的令人难以置信的物理性质。 公开了具有显着的抗红外辐射透射性的不透明石英玻璃隔热罩,其可以具有高的气泡总体密度,例如80至120 / mm 2。 这些隔热罩可以显着改善用于处理硅晶片和其他电子部件的管式炉和其他反应器的性能。
Abstract:
There is provided a quartz glass crucible for pulling a silicon single crystal and a production process for the crucible, wherein an inner surface of the crucible is crystallized without addition of impurities during pulling a silicon single crystal, thereby impurities serving as causes of crystal defects being not incorporated into the silicon single crystal, so that deterioration of its inner surface is suppressed to improve a crystallization ratio, and accordingly productivity of the quartz glass crucible as well as a quality of the silicon single crystal is improved, and the quartz glass crucible for pulling a silicon single crystal comprises a crucible base body (3) made of a translucent quartz glass layer and a synthetic quartz glass layer (4) formed on an inner wall surface of the crucible base body (3), wherein a portion encircled by a brown ring on an inner surface of the quartz glass crucible is uniformly crystallized during pulling the silicon single crystal.
Abstract:
An inner chamber is arranged inside an outer chamber and stores quartz crystal powder. A space is defined between the inner chamber and the outer chamber, and an oxygen gas is introduced into that space. The quartz crystal powder is supplied from the inner chamber into a burner section, together with the oxygen gas. The burner section is also supplied with a flammable gas from a gas control device. The flammable gas contains an NH.sub.3 gas. The heat produced by the combustion of the flammable and oxygen gases fuses the quartz crystal powder supplied from the inner chamber into the burner section. As a result, quartz containing nitrogen is produced. The nitrogen is contained in the fused quartz in an amount which is expressed as 1 to 10% by molar ratio.
Abstract:
In order to eliminate the effect of water attack on silica optical fibres, the fibres are provided with a surface layer of silicon nitride or silicon oxynitride. The method proposed includes direct nitridation. This may be achieved by adding a nitriding atmosphere to the drawing furnace gases, or to the reactive gases (TiCl.sub.4 and SiCl.sub.4) incorporated in the flame of an oxyhydrogen torch for the formation of a compressive silica/titania layer on an optical fibre by a glass soot deposition and sintering process.
Abstract:
Dielectric optical waveguides can be made having a core of vitreous silica doped with nitrogen in the form of silicon nitride, and a cladding of pure vitreous silica. Silicon nitride may be present in the core material in quantities varying between .1% to 10% by weight. The silicon nitride doped silica glass can be formed in a boule by passing a mixture of gaseous compounds containing silicon and nitrogen through a induction coupled plasma discharge. The outside of the doped silica boule may be oxidized to reduce the nitrogen content.