摘要:
The present invention provides a preparation process of complex oxides catalyst containing Mo, Bi, Fe and Co, which comprising steps as following: dissolving precursor compounds of the components for catalyst and complexing agent in water to obtain a solution, and then drying, molding and calcining the solution to obtain catalyst. The catalyst is used for gas phase oxidation of light alkenes to unsaturated aldehydes. The catalyst has high activity, selectivity and stability. The reaction condition is mild. The preparation process of the catalyst is easy to operate and can be used for mass production.
摘要:
A composite oxide catalyst for the oxidation of an olefin containing Mo and Bi as essential components, characterized in that it has a specific surface area of 5 to 25 m2/g and a pore volume of 0.2 to 0.7 cc/g, and has a pore diameter distribution wherein the volume of the pores having a pore diameter of 0.03 to 0.1 μm accounts for 30% or more of the total pore volume, the volume of the pores having a pore diameter of 0.1 to 1 μm accounts for 20% or more of the total pore volume, and the volume of the pores having a pore diameter of less than 0.03 μm is 10% or less of the total pore volume; a composite oxide catalyst for use in the vapor phase catalytic oxidation of acrolein or methacrolein or the like which comprises Mo, Bi and a halogen; either of the above two composite oxide catalysts which comprises Mo, Bi, Fe, Si and an element selected from alkali metals and thallium, and optionally Co, Ni, Mg, Ca, Zn, Ce, Sm, a halogen, B, P, As and W; a method for preparing any of the above composite catalysts; and a method for using any of the above composite oxide catalysts.
摘要:
A composite oxide catalyst for the oxidation of an olefin containing Mo and Bi as essential components, characterized in that it has a specific surface area of 5 to 25 m2/g and a pore volume of 0.2 to 0.7 cc/g, and has a pore diameter distribution wherein the volume of the pores having a pore diameter of 0.03 to 0.1 μm accounts for 30% or more of the total pore volume, the volume of the pores having a pore diameter of 0.1 to 1 μm accounts for 20% or more of the total pore volume, and the volume of the pores having a pore diameter of less than 0.03 μm is 10% or less of the total pore volume; a composite oxide catalyst for use in the vapor phase catalytic oxidation of acrolein or methacrolein or the like which comprises Mo, Bi and a halogen; either of the above two composite oxide catalysts which comprises Mo, Bi, Fe, Si and an element selected from alkali metals and thallium, and optionally Co, Ni, Mg, Ca, Zn, Ce, Sm, a halogen, B, P, As and W; a method for preparing any of the above composite catalysts; and a method for using any of the above composite oxide catalysts.
摘要:
The present invention provides: a production process for a catalyst for synthesis of an unsaturated aldehyde and/or an unsaturated carboxylic acid, which production process is suitable for producing the catalyst with good reproducibility, wherein the catalyst is excellent in activity, selectivity, and physical strength; this catalyst; and a production process for the unsaturated aldehyde and/or the unsaturated carboxylic acid by using this catalyst. The production process for the catalyst comprises the steps of: carrying out heat treatment of an aqueous solution or slurry of a starting material to thus prepare a catalyst precursor P1, wherein the starting material includes molybdenum, bismuth, and iron as essential components; thereafter adding and mixing a binder into the P1 to thus prepare a catalyst precursor P2; and molding and then calcining the P2, thereby producing the catalyst for synthesis of the unsaturated aldehyde and/or the unsaturated carboxylic acid; with the production process being characterized by involving an ignition loss ratio of the catalyst precursor P1 in the range of 10 to 40 mass % (excluding 40 mass %).
摘要:
The method of producing a catalyst for synthesis of an unsaturated aldehyde and unsaturated carboxylic acid of the present invention is characterized in that the method comprises a step of adding liquid to particles containing molybdenum, bismuth and iron and kneading the mixture, and extrusion-molding this kneaded substance, a step of preserving the molded article obtained by extrusion molding, and at least one step of drying and calcining the preserved molded article, and the contact time of particles containing molybdenum, bismuth and iron with liquid is 1 to 48 hours, and the preserving time of the molded article is 50% or more of the contact time of particles containing molybdenum, bismuth and iron with liquid. According to the production method of the present invention, catalytic activity can be easily controlled, and a catalyst having high activity and high selectivity is obtained.
摘要:
Prepared is a catalyst for use in the production of an unsaturated aldehyde and an unsaturated carboxylic acid in which catalytic activity is high and selectivity is excellent by a preparation process containing the steps of preparing catalyst component particles as dried particles prepared by spray drying an aqueous slurry containing molybdenum, bismuth and iron or as calcined particles prepared by further heat treating the dried particles; mixing and kneading the catalyst component particles with at least a liquid; first-molding the kneaded material; and second-molding the first-molded product to a finished shape using a piston molding machine.
摘要:
A catalyst useful for catalytic vapor-phase oxidation of isobutylene, t-butanol or propylene to produce respectively corresponding unsaturated aldehyde and unsaturated carboxylic acid is provided. The catalyst consists of ring-formed shaped bodies composed of (i) a catalyst composition containing at least molybdenum and bismuth as the active ingredients and (ii) inorganic fibers. The catalyst excels in mechanical strength, can give the object products at high yield and shows little activity degradation with time.
摘要:
A process for preparing annular unsupported catalysts by thermally treating annular shaped unsupported catalyst precursor bodies, wherein the side crushing strength of the annular shaped unsupported catalyst precursor bodies is ≧12 N and ≦23 N. In addition, resulting annular unsupported catalysts having a specific pore structure and also the use of such annular unsupported catalysts for the catalytic partial oxidative preparation in the gas phase of (meth)acrolein.
摘要:
Dimethyl ether is converted to formaldehyde using a supported catalyst comprising molybdenum and/or vanadium oxides. The surface density of the oxide(s) ranges from greater than that for the isolated monomeric oxides upwards, so long as there is a substantial absence of bulk crystalline molybdenum and/or vanadium oxide(s). Conversion and selectivity to formaldehyde are improved as compared to data reported for known catalysts. Also disclosed is a catalyst comprising molybdenum and/or vanadium oxides supported on a layer of stannic oxide that is disposed on the surface of a particulate alumina or zirconia support.
摘要:
The present invention provides: a production process for a catalyst for synthesis of an unsaturated aldehyde and/or an unsaturated carboxylic acid, which production process is suitable for producing the catalyst with good reproducibility, wherein the catalyst is excellent in activity, selectivity, and physical strength; this catalyst; and a production process for the unsaturated aldehyde and/or the unsaturated carboxylic acid by using this catalyst. The production process for the catalyst comprises the steps of: carrying out heat treatment of an aqueous solution or slurry of a starting material to thus prepare a catalyst precursor P1, wherein the starting material includes molybdenum, bismuth, and iron as essential components; thereafter adding and mixing a binder into the P1 to thus prepare a catalyst precursor P2; and molding and then calcining the P2, thereby producing the catalyst for synthesis of the unsaturated aldehyde and/or the unsaturated carboxylic acid; with the production process being characterized by involving an ignition loss ratio of the catalyst precursor P1 in the range of 10 to 40 mass % (excluding 40 mass %).