Abstract:
Bulk and supported catalysts are prepared from an aqueous slurry containing a catalytically active material and a binder. The slurry is either coated onto a support and dried to form a porous, high surface area phase containing the catalytically active material, or reduced to a paste-like consistency, molded and dried to form a bulk catalyst. The processes and catalysts may be employed in various catalytic chemical processes to achieve high effectiveness factor of the catalytically active material while achieving a lower pressure drop.
Abstract:
Disclosed herein is a method of distributing a washcoat along channels of a particulate filter substrate, the method including: forcing a washcoat slurry a predetermined distance into the channels, the predetermined distance being less than or equal to the full length of the channels; clearing an excess amount washcoat slurry from the channels; and arranging a remainder of the washcoat slurry within the channels, the arranging including applying a first vacuum to a first end of the particulate filter substrate after the clearing. In one embodiment the clearing includes applying a second vacuum to a second end of the particulate filter substrate. In another embodiment, the clearing includes pulling the excess washcoat slurry from the channels. The predetermined distance may be less than or equal to the full length of the channels. The arranging may provide a layer of a washcoat composition comprising a catalytically active material arranged anisotropically along a length of the channels of the particulate filter substrate.
Abstract:
A porous ceramic material has mesopores with a diameter of 2 nm to 50 nm on its surface and is fibrous for the purpose of providing a porous ceramic material which has a very large specific surface area, is fibrous, is flexible and is very useful as catalysts, catalyst carriers, photocatalysts, sensors and oxide conductors. The porous ceramic material can be prepared by immersing the fibrous matrix in an aqueous solution containing a metal source, a surfactant and urea and heating the resulting mixture to thereby deposit a metallic compound on the outer surface of a fibrous matrix; and eliminating the fibrous matrix.
Abstract:
The present invention provides a lead-acid battery superior in high-efficiency charging characteristic to conventional lead-acid batteries; and a carbon material used in the lead-acid battery, having excellent charge acceptability. That is, the present invention provides a lead-acid battery which uses, as an additive to the anode active material, a simple substance and/or a compound thereof, both having a catalysis for desulfurization or a catalysis for SOx oxidation by adding to or loading on a carbon material such as active carbon, carbon black or the like and thereby has superior high-efficiency charging characteristic and improved charging acceptability. When such a lead-acid battery whose anode contains a carbon material containing or loading thereon the above simple substance and/or compound, is applied to electric cars, various hybrid cars, power storage systems, elevators, electromotive tools and power source systems such as uninterruptible power source, distributed power source and the like, all having high input and output requirements, stable control can be obtained.
Abstract:
A method for producing high yields of high-purity carbon nanostructures having uniform average widths narrower than conventional carbon nanostructures. The nanostructures are produced from unsupported catalytic metal powders. A dispersing agent, such as sodium chloride, is blended with the catalytic metal powders prior to milling to the desired catalytic size to prevent the powder particles from sintering.
Abstract:
Method for producing novel photochemically-active metal oxide-containing aqueous compositions such as TiO2 compositions coated or sprayed and dried under ambient conditions to form novel photochemically-active, colorless coatings having strong wetability and adhesion to clear substrates such as window glass. Preferably the present compositions include a suitable wetting agent or combination of agents to improve the wetability of the Titanium peroxide-containing amorphous film, allowing thinner films to be readily applied. Also the inclusion of an acrylic aliphatic urethane polymer can replace wholly or partially the titanium peroxide sol and provide additional film forming and wetability properties. The acrylic urethane polymer reduces or eliminates the amount of titanyl peroxide that is required and thereby reduces or eliminates the yellow color.
Abstract:
A composition for controlling CO and NOx emissions during FCC processes comprises (i) acidic oxide support, (ii) cerium oxide, (iii) lanthanide oxide other than ceria such as praseodymium oxide (iv), optionally, oxide of a metal from Groups Ib and IIb such as copper, silver and zinc and (v) precious metal such as Pt and Pd.
Abstract:
A method of producing composite particles of titanium dioxide and a compound inactive as a photocatalyst, comprising the steps of preparing a water based slurry of pH 3 to 5 comprising titanium dioxide, preparing a water based solution comprising a compound inactive as a photocatalyst, and reacting the slurry and the water based solution together at a pH within a range from 4 to 10 is provided, together with highly active photocatalyst particles produced using such a method, and potential uses of such photocatalyst particles.
Abstract:
The present invention includes a catalyst structure and method of making the catalyst structure for Fischer-Tropsch synthesis that both rely upon the catalyst structure having a first porous structure with a first pore surface area and a first pore size of at least about 0.1 nullm, preferably from about 10 nullm to about 300 nullm. A porous interfacial layer with a second pore surface area and a second pore size less than the first pore size is placed upon the first pore surface area. Finally, a Fischer-Tropsch catalyst selected from the group consisting of cobalt, ruthenium, iron and combinations thereof is placed upon the second pore surface area. Further improvement is achieved by using a microchannel reactor wherein the reaction chamber walls define a microchannel with the catalyst structure is placed therein through which pass reactants. The walls may separate the reaction chamber from at least one cooling chamber. The present invention also includes a method of Fischer-Tropsch synthesis.
Abstract:
A method of fabricating a long carbon nanotube yarn includes the following steps: (1) providing a flat and smooth substrate; (2) depositing a catalyst on the substrate; (3) positioning the substrate with the catalyst in a furnace; (4) heating the furnace to a predetermined temperature; (5) supplying a mixture of carbon containing gas and protecting gas into the furnace; (6) controlling a difference between the local temperature of the catalyst and the furnace temperature to be at least 50null C.; (7) controlling the partial pressure of the carbon containing gas to be less than 0.2; (8) growing a number of carbon nanotubes on the substrate such that a carbon nanotube array is formed on the substrate; and (9) drawing out a bundle of carbon nanotubes from the carbon nanotube array such that a carbon nanotube yarn is formed.