Abstract:
A system is provided for drilling a borehole into an earth formation, comprising a casing arranged in the borehole, a drill string extending through the interior of the casing to a lower end portion of the borehole, and a body of drilling fluid extending into the casing, the casing having an inner surface susceptible of wear due to frictional contact with an outer surface of the drill string during drilling of the borehole with the drill string. The system further comprises means for reducing wear of the inner surface of the casing, the means including at least one of a hardened layer at the inner surface of the casing, a friction-reducing layer at the outer surface of the drill string, and a lubricating compound contained in the body of drilling fluid.
Abstract:
An aqueous hydraulic fluid composition comprising a first lubricant comprising at least one phospholipid and a second lubricant comprising an alkoxylate salt. The aqueous hydraulic fluid composition contains less than about 20% by weight (preferably none or substantially none) of an oil selected from the group consisting of mineral oils, synthetic hydrocarbon oils, and mixtures thereof. The use of alkoxylate salts provides increased lubricity and also acts as an emulsion stabilizer for the composition.
Abstract:
The invention discloses a method of controlling fluid loss from a subterranean formation of a well bore. In a first aspect, the method is done by providing a treatment fluid made of an aqueous fluid and a hydrophobic polymer; and introducing the treatment fluid into the wellbore. In a second aspect, the method is done by providing a treatment fluid made of water and a water soluble polymer; providing in the treatment fluid a fluid loss additive having a hydrophobic polymer; using the treatment fluid in a well bore of a subterranean formation; allowing the treatment fluid to establish a permeable filter cake with the water soluble polymer in at least a portion of the well bore; and allowing hydrophobic polymer to enter into the filter cake to reduce permeability of the filter cake.
Abstract:
A method for viscosifying brine systems utilized in oilfield applications comprising: a) preparing a heavy brine system comprising obtaining an aqueous brine system comprising a hydrated polysaccharide and at least one multivalent salt, wherein the density of the aqueous brine system is greater than about 10 pounds per gallon (ppg), and adding an effective amount of an alkaline agent, thereby increasing the viscosity of the brine system. Also disclosed are methods for viscosifying brine systems utilized in well servicing applications comprising obtaining an aqueous brine solution comprising at least one multivalent salt, wherein the density of the aqueous brine system is greater than about 10 pounds per gallon (ppg); adding a polysaccharide; adding an effective amount of an acid buffering agent to the brine system to lower the pH of the brine system, whereby the polysaccharide is capable of substantially hydrating into the brine system; and adding an effective amount of an alkaline agent, thereby substantially increasing the viscosity of the brine system.
Abstract:
Methods are provided that include a method comprising providing a viscosified treatment fluid comprising a base fluid and a gelling agent that comprises a clarified xanthan; and placing the viscosified treatment fluid into at least a portion of a subterranean formation. In some embodiments, the method comprises placing the viscosified treatment fluid into at least a portion of a subterranean formation at a pressure sufficient to create or enhance at least one fracture in the subterranean formation. In some embodiments, the viscosified treatment fluid may also comprise a plurality of particulates. In some embodiments, the viscosified treatment fluids may be placed into at least a portion of a pipeline. Additional methods are also provided.
Abstract:
Many methods and compositions are provided. One of the methods provided comprises the steps of: providing an aqueous treatment fluid that comprises a polysaccharide and a dual functional component, the aqueous treatment fluid having a first viscosity; allowing the dual functional component to interact with the polysaccharide such that the viscosity of the aqueous treatment fluid increases to a second viscosity, the second viscosity being greater than the first viscosity; placing the aqueous treatment fluid into a subterranean formation; and allowing the dual functional component to interact with the polysaccharide so as to reduce the second viscosity of the aqueous treatment fluid to a third viscosity, the third viscosity being less than the second viscosity. An example of a composition is a viscosified treatment fluid for treating subterranean formations comprising: an aqueous base fluid and an apparent cross linked reaction product of a polysaccharide and a dual functional component.
Abstract:
A drilling fluid additive is provided and the additive consist of: hydrolyzed glucose syrup solids in the amount from about 30 to about 90% by weight of total volume of the additive and a liquid medium in the amount from about 10 to about 70% by weight of total volume of the additive.
Abstract:
Among many things, in some embodiments, dual-function additives that enhance fluid loss control and the stability of viscoelastic surfactant fluids, and their associated methods of use in subterranean formations, are provided. In one embodiment, the methods comprise: providing a viscoelastic surfactant fluid that comprises an aqueous base fluid, a viscoelastic surfactant, and a dual-function additive that comprises a soap component; and introducing the viscoelastic surfactant fluid into at least a portion of a subterranean formation.
Abstract:
A method is provided for producing a guar gum powder, the method comprising the steps of: (a) flaking undehusked guar splits; and (b) grinding the flaked, undehusked guar splits to obtain guar gum powder. According to another aspect of the invention, a method is provided for treating a subterranean formation penetrated by a wellbore, the method comprises the steps of: (a) forming a treatment fluid, wherein the treatment fluid comprises: (i) an aqueous fluid; and (ii) a guar gum powder comprising at least 70% by weight gum material and at least 15% by weight husk material; and (b) introducing the treatment fluid into the subterranean formation through the wellbore, According to yet another aspect of the invention, the product of the method for producing a guar gum powder is used in the method for treating a subterranean formation.
Abstract:
Methods comprising: providing a treatment fluid comprising: an aqueous base fluid and a gelling agent that comprises a nonnatural galactomannan; and placing the treatment fluid into the subterranean formation. Treatment fluids suitable for use in a subterranean treatment operation comprising an aqueous base fluid and a gelling agent that comprises a nonnatural galactomannan.