Abstract:
The present invention relates to a field-emission display having a faceplate formed with a phosphor layer and means irradiating an electron beam onto the phosphor layer in order to improve the characteristic of life of the device. The feature of the present invention is in the structure of a phosphor layer. The phosphor layer is expressed by a general formula: ZnS: M, Al where M is an activator of at least one of Cu, Ag and Au; and Al is a coactivator, in which the concentration of Al is higher than that of M. According to the present invention, the electrification characteristic of the phosphor is improved for lower resistance. The defect concentration of the surface of the phosphor is reduced. The filed-emission display which can realize improvement in the characteristic of life which has not been solved in the prior art can be made.
Abstract:
Phosphor and a plasma display device are provided whose deterioration in brightness of phosphors and a degree of change in chromaticity are alleviated and whose discharge characteristics are improved and that has excellent initial characteristics. Phosphor of the present invention is an alkaline-earth metal aluminate phosphor containing an element M (where M denotes at least one type of element selected from the group consisting of Nb, Ta, W and B). In this phosphor, a concentration of M in the vicinity of a surface of the phosphor particles is higher than the average concentration of M in the phosphor particles as a whole. A plasma display device according to the present invention includes a plasma display panel in which a plurality of discharge cells in one color or in a plurality of colors are arranged and phosphor layers are arranged so as to correspond to the discharge cells in colors and in which light is emitted by exciting the phosphor layers with ultraviolet rays. The phosphor layers include blue phosphor, where the afore-mentioned phosphor is used as the blue phosphor.
Abstract:
A method of constructing a flexible panel display using gold as a conductive element and a matrix of carbon fibers as emitters is presented. The invention provides a novel defined pixel width of three emitter fibers per cell wherein each cell is positioned within three emulsion layers of suspended nano-crystals stack positioned vertically atop one-another. Each of these respective layers is excited by a single carbon fiber. In the preferred embodiment, fiber length ends from each cell are positioned at the mid-point of each respective polymer layer thickness and produce one of red, green, or blue colors required to complete the image formation.
Abstract:
A method of manufacturing a highly crystallized phosphor powder, comprising: making a raw material solution containing metal elements and/or semimetal elements that will be constituents of the phosphor into fine liquid droplets, subjecting the liquid droplets to decomposition by heating at a temperature of 500 to 1800° C. to produce hollow precursor particles and/or porous precursor particles, heating the precursor particles to crystallize the precursor particles while maintaining the hollow or porous form, and grinding the crystallized particles down to a predetermined particle size. The obtained phosphor powder is a high luminance inorganic phosphor powder that is extremely fine, and yet has few defects on the surface of or inside the powder, and hence has excellent crystallinity and light emission characteristics, and provides a phosphor composition useful for producing a phosphor layer with high coverage and high luminance of light emission.
Abstract:
This invention provides a phosphor material capable of absorbing primary light and converting that light into white light having a high color rendering index and illumination devices made from the phosphor material. The white light may have a color rendering index of 100 and may be produced with an efficiency of at least 30 lm/w. In one embodiment, the illumination device includes a secondary light source made from a plurality of Group IV semiconductor nanoparticles.
Abstract:
Spherical particles of a rare earth activated barium fluoride halide phosphor precursor having the formula(I): Ba1-aMIIaFX:yMI,zLn (I) [in which MII is Ca or Sr; MI is Li, Na, K, Rb or Cs; X is Cl, Br or I; Ln is a rare earth element; and a, y and z are numbers satisfying the conditions of 0≦a≦0.5, 0≦y≦0.05, and 0
Abstract translation:具有式(I)的稀土活化的氟化钡卤化物荧光体前体的球形颗粒:[其中M II是Ca或Sr; M 1是Li,Na,K,Rb或Cs; X是Cl,Br或I; Ln是稀土元素; 和a,y和z是满足0 <= a <= 0.5,0 <= y <= 0.05和0
Abstract:
The present invention relates to a plasma display device apt to increase luminance of a phosphor layer and prevent degradation of a discharge characteristic, and to a phosphor used for the device. This plasma display device has a green phosphor having a crystal structure of Zn2SiO4:Mn, and monovalent oxide is substituted for part of the green phosphor. The monovalent oxide is one or more of lithium oxide (Li2O), sodium oxide (Na2O), potassium oxide (K2O), cesium oxide (Cs2O), rubidium oxide (Rb2O), copper oxide (Cu2O), and silver oxide (Ag2O). This structure allows reduction of oxygen defects occurring in the green phosphor, suppression of the luminance decrease of the green phosphor, and improvement of a discharge characteristic.
Abstract:
A low mercury consumption electric lamp is provided having a a layer of a luminescent material comprising a phosphor derived from a mixture of a blue-halo calcium halophosphate phosphor having an average particle size within the range of about 6.6 to about 10 microns; a calcium-yellow calcium halophosphate phosphor having an average particle size within the range of about 9.0 to about 13 microns; and fines of a warm-white calcium halophosphate phosphor, preferably having an average particle size of about 4.62.
Abstract:
A fluorescent display device cable of being significantly increased in emission. A grid electrode is formed of a nonleaded conductive paste constituted by Al containing at least one of organic metal and phosphate glass frit by screen printing. This positively prevents precipitation of Pb on the grid electrode due to reduction of PbO by oxidation of Al during calcination of the conductive paste as encountered with the prior art.
Abstract:
Systems and methods are described that relate to quantum dot (QD) structures for lighting applications. In particular, quantum dots and quantum dot containing inks (comprising mixtures of different wavelength quantum dots) are synthesized for desired optical properties and integrated with an LED source to create a trichromatic white light source. The LED source may be integrated with the quantum dots in a variety of ways, including through the use of a small capillary filled with quantum dot containing ink or a quantum dot containing film placed appropriately within the optical system. These systems may result in improved displays characterized by higher color gamuts, lower power consumption, and reduced cost.