Abstract:
A high pressure gas discharge lamp and the method of making same utilizing integrated circuit fabrication techniques. The lamp is manufactured from heat and pressure resistant planar substrates in which cavities are etched, by integrated circuit manufacturing techniques, so as to provide a cavity forming the gas discharge tube. Electrodes are deposited in the cavity. The cavity is filled with gas discharge materials such as mercury vapor, sodium vapor or metal halide. The substrates are bonded together and channels may be etched in the substrate so as to provide a means for connection to the electrodes. Electrodeless RF activated lamps may also be fabricated by this technique. Lamps fabricated from three or more planar substrates are disclosed.
Abstract:
The present invention utilizes the natural damping of acoustic compression waves within an gas discharge tube, typically a high intensity discharge ("HID") lamp, to avoid resonant acoustic waves having sufficient amplitude to affect adversely the performance or lifetime of the HID lamp. The energy delivered to the HID lamp during each half-cycle of driving power is measured and adjusted such that the total time-averaged power delivered to the lamp remains constant at the lamp's rated power level, but the energy delivered to the discharge gas during each half-cycle is maintained below that level of half-cycle energy delivery at which acoustic resonance will overcome damping and build to harmful levels of amplitude. This is accomplished according to the present invention by varying the frequency of the applied electrical power. For a constant time-averaged power delivered to the lamp, increasing the frequency necessarily entails a reduction in the energy delivered per cycle. The present invention relates to maintaining constant power in a HID lamp yet avoiding acoustic resonance by dynamic adjustment of the frequency and power per cycle such that the acoustic wave amplitudes, determined by the power per cycle, is held to a level at which the natural damping mechanisms of the tube will suppress resonance.
Abstract:
A discharge lamp with offset or tilted arc tube includes a glass envelope or bulb which surrounds an arc tube. One end of the bulb has a threaded mount for securement into a lamp socket. The arc tube is supported inside the bulb in a position whereby the longitudinal axis of the arc tube is offset from the longitudinal axis of the bulb.
Abstract:
A high intensity discharge lamp has a light transmissive envelope and an arc tube located within the envelope. The arc tube contains an arc generating and sustaining medium as well as electrodes. A flare is sealed to the lamp envelope and the flare includes two electrically conductive lead-ins sealed therein, each of the lead-ins having a given diameter. A mica heat shield comprising a planar mica disc frictionally engages the lead-ins, the mica disc having a pair of lead-in receiving apertures therein, the receiving apertures having a diameter greater than the given diameter and each having an oppositely extending, radial slot extending therefrom, each of the slots having a width less than the given diameter. The mica heat shield is positioned on the lead-ins closely and adjacent to the upper surface of the flare by having the slots in frictional engagement with the lead-ins.
Abstract:
In a discharge lamp having a discharge medium sealed in a discharge tube assembly including electrodes for producing a discharge, a nitride layer is formed on a surface of an envelope tube of the discharge tube assembly. The nitride layer is formed by substituting an oxygen component of an oxide constituting the tube wall of the envelope tube with nitrogen, and exhibits a continuous and smooth reduction in nitride content in the direction of depth. This chemically stable nitride layer prevents a reaction between the discharge medium and the tube wall material, and removal or injection of the discharge medium. In addition, since the nitride layer also exhibits a continuous change in thermal expansion coefficient in the direction of depth, the thermal stress is reduced, and cracking, peeling, removal, and the like do not occur.
Abstract:
A high pressure gas discharge lamp and the method of making same utilizing integrated circuit fabrication techniques. The lamp is manufactured from heat and pressure resistant planar substrates in which cavities are etched, by integrated circuit manufacturing techniques, so as to provide a cavity forming the gas discharge tube. Electrodes are deposited in the cavity. The cavity is filled with gas discharge materials such as mercury vapor, sodium vapor or metal halide. The substrates are bonded together and channels may be etched in the substrate so as to provide a means for connection to the electrodes. Electrodeless RF activated lamps may also be fabricated by this technique. Micro-lasers may also be fabricated by this technique as well.
Abstract:
Alumina arc tube sealing members including a highly pure, fine alumina doped with yttrium oxide, and magnesium oxide. The sealing members are used in the formation of sintered hermetic seals to a green, prefired, or fully sintered translucent alumina arc tube and niobium electrical feedthrough assemblies with or without the use of sealing frits or brazing alloys.
Abstract:
Miniature high pressure arc lamps containing a substantial pressure of xenon, in addition to metal halide and mercury, can provide instant light at turn-on and are suitable for automotive headlamps. The xenon aggravates convection which causes arc-bowing and overheating of the envelope above the arc. By operating the lamps on unidirectional current upon which a frequency-modulated high frequency ripple has been imposed, acoustic resonance is used to straighten out the arc. The use of unidirectional current permits a reduction in cost and size of the ballast control circuits operated from auto storage battery. Frequency modulation of the ripple broadens the band allowing acoustic straightening of the arc. Additional control of the arc plus reduction of cataphoresis may be achieved through a horizontal magnetic field at the arc, transverse to current flow.
Abstract:
A high-pressure mercury vapor discharge lamp whose envelope two tungsten electrodes disposed therein of tungsten and a filling containing a rare gas, a quantity of mercury larger than 0.2 mg/mm.sup.3 at a mercury a pour pressure of more than 200 bar and at least one of the halogens chlorine, bromine or iodine in a quantity between 10.sup.-6 and 10.sup.-4 .mu.mol/mm.sup.3. The wall load in operation is higher than 1 W/mm.sup.2.
Abstract translation:一种高压汞蒸汽放电灯,其外壳中设置钨的两个钨电极和含有稀有气体的填充物,汞的量大于0.2mg / mm 3,倾倒压力大于200巴,至少一个 的卤素氯,溴或碘的量为10-6至10-4μmol/ mm3。 操作中的墙体载荷高于1 W / mm2。
Abstract:
A method of and a device for the operation of a high-pressure discharger lamp provided with a discharge vessel (3) which accommodates an ionizable filling and two electrodes (4, 5), between which electrodes in the operating condition the discharge takes place. The lamp is operated from a supply source which supplies a power of periodically alternating value. According to the invention, for each power frequency .nu..sub.i (i=1,2, . . .) the relation .nu..sub.i .gtoreq.60 .nu..sub.1 is satisfied, where .nu..sub.1 is the lowest frequency at which in the operating condition of the lamp standing pressure waves can occur in the discharge vessel (3). Thus, it is possible to operate the lamp so as to be free from arc instabilities due to standing pressure waves.