Abstract:
A plasma display panel (PDP) is disclosed which includes a plurality of anodes formed on an upper plate, a plurality of first sustaining electrodes and a plurality of alternating second sustaining electrodes and cathodes formed on a lower plate, and a dielectric coated on the first and second sustaining electrodes and cathodes. A method for driving the PDP includes the steps of initiating a discharge by supplying a potential higher than the discharge firing voltage to the anodes and cathodes, generating a predetermined potential between the cathodes and first sustaining electrodes to increase the voltage generated from the discharge-initiating step, supplying a voltage higher than a discharge sustaining voltage between the first and second sustaining electrodes to maintain the discharge, and supplying a narrow pulse to the cathodes for erasing the discharge.
Abstract:
A plasma display panel in which two transparent base plates are assembled together to define a discharge gas space therebetween. On each transparent base plate, a plurality of strip-like main electrodes are provided and a dielectric layer is formed to cover them and, further, third electrodes are each provided between adjacent ones of the main electrodes. The two transparent base plates are assembled together in opposing relation to each other in such a manner that their main electrodes and third electrodes are disposed substantially perpendicuar to each other in the form of a matrix. By impressing a voltage to selected ones of the main electrodes of the both transparent base plates, a discharge spot is produced at their intersecting point to provide a display. The discharge spot becomes enlarged or reduced or extends in a certain direction according to the polarity of a voltage impressed between the third electrodes of both transparent base plates and to the selection of the third electrodes to be supplied with the voltage. The discharge spot can be shifted in either direction of the row and column of the matrix.
Abstract:
An ion source having a thermally isolated repeller is disclosed. The repeller comprises a repeller disk and a plurality of spokes originating at the back surface of the repeller disk and terminating in a post. In certain embodiments, the post may be hollow through at least a portion of its length. The use of spokes rather than a central stem may reduce the thermal conduction from the repeller disk to the post. By incorporating a hollow post, the thermal conduction is further reduced. This configuration may increase the temperature of the repeller disk by more than 100° C. In certain embodiments, radiation shields are provided on the back surface of the repeller disk to reduce the amount of radiation emitted from the sides of the repeller disk. This may also help increase the temperature of the repeller. A similar design may be utilized for other electrodes in the ion source.
Abstract:
Flash tubes for photographic use, in particular a flash tube is adapted to provide a light output adapted to FP-sync, Flat Peak. The flash tube includes a length of glass tubing enclosing a gas for use in the flash tube, a cathode inside a first end part of glass tubing and an anode inside a second end part of glass tubing. The cathode includes an element that helps to ionize the gas that is wound around the cathode, such that a spark stream starts from the upper part of the cathode and is prevented from spreading down wards on the cathode and changing the arc length during the light output adapted to FP-sync.
Abstract:
A surface-discharge type PDP includes plural electrode pairs formed of first and second sustain electrodes arranged on a first substrate. Each pair extends along a line direction, and the first and second sustain electrodes are in parallel and adjacent to each other. Plural address electrodes arranged on a second substrate opposing the first substrate via a discharge space, each extending along a row direction, a matrix corresponding to a screen to be displayed is formed with the main electrodes and address electrodes, the address electrodes are orthogonal to the main electrodes, each of the address electrode is divided into, for example two partial address electrodes separated from each other by a border line located between adjacent main electrode pairs, whereby the screen is divided into two partial screens, wherein a first clearance between the partial address electrodes is substantially larger than a second clearance between main electrode pair adjacent across the border line. The arrangement order of the first and second sustain electrodes may preferably be such that first sustain electrodes of the first and second partial screens face each other via the border line, and the partial address electrodes may not cross over the first sustain electrodes nearest to the border line.
Abstract:
The initializing period of at least one of a plurality of sub-fields constituting one field is a selective initializing period for selectively initializing discharge cells in which sustain discharge has occurred in the sustaining period of the preceding sub-field. In the sustaining period of the sub-field prior to the sub-field including the selective initializing period, voltage Vr is applied to a priming electrode (PRi) for causing discharge between the priming electrode (PRi) and corresponding scan electrode (SCi) using the priming electrode (PRi) as a cathode.
Abstract:
A plasma discharge method and a plasma display using the same. In the method, a sustain discharge uses a facing surfaces discharge and a surface discharge after an address discharge. The discharges occur in separate discharge areas, and priming particles generated by the discharges are exchanged. Thus, the stability and the efficiency of the sustain discharge increase, and a gap for the address discharge decreases to lower a breakdown voltage.
Abstract:
A method and apparatus of driving a plasma display panel for preventing a damage of a driving integrated circuit caused by an abnormal discharge generated from a non-display area is disclosed. In the apparatus, a plurality of drivers drives driving electrodes of an active area and dummy electrodes of a non-display area. A current limiter is positioned between any at least one of the dummy electrodes and the drivers to limit currents flowing in the dummy electrodes.
Abstract:
A plasma display panel and driving method thereof perform addressing at a high speed and a low voltage without deteriorating contrast. Priming electrodes forming priming cells are located outside but adjacent a display area. Glow occurring in the priming cells is intercepted. When priming discharge is induced at a reset step, voltages lower than a discharge start voltage are applied to first (X) and second (Y) electrodes and third (address) electrodes respectively. Despite the voltages being lower than the discharge start voltage, once discharge is induced in the priming cells, discharge starts in adjoining cells. The discharge then spreads successively over all the cells, thus inducing discharge in all the cells. Consequently, wall charge is produced in all the cells.
Abstract:
An AC plasma panel display includes front and back panels that respectively support a first parallel electrode pattern and a second orthogonally oriented, parallel electrode pattern. The electrode patterns define a display area and both patterns are covered by dielectric layers. A dischargeable gas is positioned between the dielectric layers in the known manner. Driver circuitry is coupled to both electrode patterns for creating a spatially continuous gas discharge along at least one continuous electrode of one electrode pattern and across the entire display area. The driver circuitry scans the spatially continuous gas discharge across remaining parallel electrodes of the one electrode pattern so as to scan the entire display area. A further electrode is in DC conductive communication with the gas and is positioned outside of the display area but in contact with the spatially continuous gas discharge during its scanning action. The electrode provides a capacitive structure which prevents a build-up of an excessive static charge on the dielectric layers and thereby prevents dielectric breakdown.