Abstract:
An apparatus and method for mass spectrometric determination of contaminant components of a thin oxide surface layer of a semiconductor wafer use a movable mechanical stage to scan and raster a large area of the wafer in a continuous scanning motion. The mass of analyte is greatly increased, resulting in improved sensitivity to trace components in the surface layer by a factor of 10-100 or more. A light beam interferometer is used to determine non-planarity from e.g. warping of the wafer and provide a correction by maintaining a constant separation between the wafer and the extraction plate or adjusting the electrical bias of the wafer relative to the extraction bias.
Abstract:
Verification of properness of a modeling theory of an uncrystallized substance or an image processing method is made easy. There includes: a first displaying unit 120 for rotationally displaying an simulated three-dimensionally shaded model image, which is a shaded image of the three-dimensional reconstruction image; and a second displaying unit 140 for displaying the three-dimensional image of the substance acquired by experimental structural analysis, which synchronously rotates with the simulated three-dimensionally shaded model image.
Abstract:
A method of nano-manipulation, including providing a nano-scale object movably positioned over a substrate and positioning a probe of a scanning probe microscope proximate the nano-scale object. The probe is then moved across the substrate along a gyrating path proximate the nano-scale object to reposition the nano-scale object.
Abstract:
In accordance with one embodiment, the disclosure pertains to an apparatus for inspection of substrates. The apparatus includes at least a dual-energy e-beam source, an energy-dependent dispersive device, a beam separator, and an objective lens. The dual-energy e-beam source is configured to generate both a higher-energy e-beam component and a lower-energy e-beam component. Said two components exit the dual-energy e-source co-axially. The energy-dispersive device is configured to introduce dispersion between the two components. The components exit the dispersive device at different angles of trajectory. The beam separator is configured to receive the two dispersed components and substantially cancel the dispersion previously introduced by the dispersive device. As a result, the two components are rejoined in trajectory. Finally, the objective lens configured to focus said two rejoined components onto an area of the substrate.
Abstract:
In a transmission electron microscope with phase contrast imaging, the illumination of the object to be imaged takes place with an annular illuminating aperture. An annular phase-shifting element with a central aperture is arranged in a plane Fourier transformed with respect to the object plane. The annular phase-shifting element confers a phase shift of &pgr;/2 on a null beam, while the radiation of higher diffraction orders diffracted at the object in the direction of the optical axis passes through the central aperture of the annular phase-shifting element and consequently is not affected, or only slightly affected, by the phase-shifting element. The annular illuminating aperture is preferably produced sequentially in time by a deflecting system, which produces a beam tilt in a plane conjugate to the object plane.
Abstract:
An electron-optical lens arrangement with an axis that can be substantially displaced, and useful for electron lithography, includes a cylinder lens and a quadrupole field. The plane of symmetry of the quadrupole field extends in the mid-plane of the gap pertaining to the cylinder lens. The focussing level of the quadrupole is oriented in the direction of the gap. The amount of the focussing refractive power belonging to the cylinder lens is twice as high as the amount of the quadrupole. A deflection system for the charged particles is connected upstream in the level of the gap pertaining to the cylinder lens and several electrodes or pole shoes, which generate a quadrupole field are provided in the direction of the gap pertaining to the cylinder lens. The electrodes or pole shoes can be individually and, preferably, successively excited and the quadrupole field can be displaced according to the deflection of the particle beam, so that the particle beam impinges upon the area of the quadrupole field. A holding device is provided for an object, such as a wafer, and is arranged vertically in relation to the optical axis and can be displaced in relation to the direction of the gap pertaining to the cylinder lens.
Abstract:
Method and apparatus for observing a specimen image on a scanning charged-particle beam instrument in such a way that the original observational position can be automatically resumed after movement of a specimen or its image. When an image is observed at the original position after a specimen or its image is rotated or moved, a keyboard or a pointing device is operated to command reconstruction of the image. In response to this, the CPU of the instrument reads data from a memory that indicates the history of rotations and movements of the specimen and image. For example, if the specimen has been mechanically rotated, the CPU controls a rotational drive circuit according to the data read from the memory, the data indicating amounts and directions of rotations. The specimen stage is rotated through a given angle in a direction opposite to the previous direction. As a result, the specimen can be returned to the position assumed prior to the rotation.
Abstract:
A technique for measuring the chemical composition of surface particles or other small features which may be present on semiconductor wafers or other substrates. A particle is irradiated with a variable energy, focused incident electron beam. X-ray or electron emissions from the particle are monitored to detect an increase in output indicating the ionization threshold of the materials in the particle. The incident beam energy is correlated with the thresholds detected to determine the species present in the particle.
Abstract:
A method of precision calibration of magnification of a scanning microscope with the use of a test diffraction grating has the steps of positioning and orienting of a test object on a stage of microscopes so that strips of a test diffraction grating are perpendicular to a direction along which a calibration is performed, scanning a selected portion of the test object along axes X and Y, measuring values of a signal S versus coordinates x and y in a plane of scanning and storing the values S (x,y) in a digital form as a two-dimensional digital array, transforming the two-dimensional array of signals (x, y) into a two-dimensional array S(u, v) by turning of the axes so that a direction of a new axis U is perpendicular to the strips of grating and a direction of a new axis V coincides with the strips of the grating, line-by-line mathematical processing of the array S(u, v) in a new manner.
Abstract:
A charged particle beam system comprising a charged beam source, a condenser lens, a scanning deflecting device, an objective lens and a secondary electron detector further comprises a slant observing deflecting device arranged between the objective lens and a sample. The slant observing deflecting device deflects charged particle beams immediately before the surface of the sample, to cause the charged particle beams to be slantingly incident on the sample. The deflection angle of the charged particle beams is controlled by a DC current component which is inputted to the slant observing deflecting device. The irradiation position shift of the charged particle beams due to the slant deflection is corrected and controlled by feeding an input value of the slant observing deflecting device and the slant angle of the charged particle beams back to the input value of the scanning deflecting device.