Abstract:
A semiconductor device with high structural reliability and low parasitic capacitance is provided. In one example, the semiconductor device has a surface. The semiconductor device comprises a semiconductor region, wherein an emitter region, a base region, and a collector region are laminated from a side near a substrate of the semiconductor region; an insulating protection layer disposed on the surface; and a wiring layer disposed on the surface, the insulating protection layer forming a via hole from the side of the substrate of the semiconductor region, the via hole being formed to allow the wiring layer to make a contact to an electrode of the emitter region from a side of the substrate where the emitter region, the base region, and the collector region are laminated and where the semiconductor region is isolated.
Abstract:
A system and method for controlling an information state of a superconducting qubit having a superconducting loop that includes a bulk loop portion, a mesoscopic island portion, and two Josephson junctions separating the bulk loop portion from the mesoscopic island portion is described. The method includes applying a bias across the mesoscopic island portion. In one embodiment, the method includes driving a bias current in the superconducting loop. In one embodiment, the method includes driving a bias current in the superconducting loop by coupling a magnetic flux into the superconducting loop. In one embodiment, the control system includes a tank circuit inductively coupled to the superconducting loop. In one embodiment, entanglement between qubits is provided by connections between qubits to be entangled.
Abstract:
High quality gallium arsenide (GaAs) (38) is grown over a thin germanium layer (26) and co-exists with silicon (40) for hetero-integration of devices. A bonded germanium wafer of silicon (22), oxide (24), and germanium (26) is formed and capped (30). The cap (30) and germanium layer (26) are partially removed so as to expose a silicon region (32) and leave a stack (31) of oxide, germanium, and capping layer on the silicon. Selective silicon is grown over the exposed silicon region. Silicon devices (36) are made in the selectively grown region of silicon (34). The remaining capping layer (30) is etched away to expose the thin layer of germanium (26). GaAs (38) is grown on the thin germanium layer (26), and GaAs devices (29) are built which can interoperate with the silicon devices (36). Alternatively, a smaller portion of the remaining cap (30) can be removed and germanium or silicon-germanium can be selectively grown on the exposed germanium (214) in order to form germanium or silicon-germanium devices (216). The smaller remaining cap can subsequently be removed to access the germanium and form GaAs devices (222) thereby allowing, GaAs, germanium-based, and silicon devices to co-exist.
Abstract:
This invention provides a hetero-junction bipolar transistor (HBT) in which both a base resistance and a base-collector parasitic capacitance are decreased. The HBT has a collector (C) 18, a base (B) 20 and an emitter (E) 26. The collector comprises an outer collector region and an inner collector region, a thickness of the outer collector region is greater than that of the inner region. The base comprises an intrinsic region and an extrinsic region on the outer collector region, while the intrinsic base disposed on the inner collector region. The emitter is disposed on both the intrinsic base and the extrinsic base, and has a band gap energy greater than that of the base.
Abstract:
Disclosed are apparatus and methods for designing electrical contact for a bipolar emitter structure. The area of an emitter structure (106, 306, 400, 404) and the required current density throughput of an electrical contact structure (108, 308, 402, 406) are determined. A required electrical contact area is determined based on the required current density, and the electrical contact structure is then designed to minimize the required electrical contact area with respect to the emitter structure area.
Abstract:
In an element formation region, a surface of an Nnull epitaxial layer is inclined upward from an end of a field oxide film to a sidewall of an opening. An external base diffusion layer formed on the surface of the Nnull epitaxial layer is inclined upward from a side of the field oxide film to the sidewall of the opening, and is exposed at the sidewall of the opening. A portion of the sidewall of the opening exposing the external base diffusion layer is tapered. A depth of a lower end of the external base diffusion layer on the sidewall of the opening is substantially equal to or smaller than that of a bottom of the opening. With this, decrease in breakdown voltage between an emitter and a base is suppressed, and decrease and variation of a current gain hFE is suppressed.
Abstract:
MOS transistor cells 1 and MOS transistor cells 2 having different gate threshold voltages are formed on a chip 8. The MOS transistor cells 1, 2 having the different gate threshold voltages are connected in parallel.
Abstract:
A bipolar heterojunction transistor (HBT) includes a collector layer, a base layer formed on the collector layer, a first transition layer formed on the base layer, an emitter layer formed on the first transition layer, a second transition layer formed on the emitter layer, and an emitter cap layer formed on the second transition layer. Each of the first and second transition layers is formed of a composition that contains an element, the mole fraction of which is graded in such a manner that the conduction band of the HBT is continuous through the base layer, the first and second transition layers, the emitter layer and the emitter cap layer.
Abstract:
Impurity of a conductivity type for formation of an intrinsic base diffusion layer and impurity of the opposite conductivity type are implanted into a semiconductor substrate. An exposed surface of the semiconductor substrate is irradiated with plasma, so that many crystal defects are produced therein. Next, a polysilicon film is formed under the condition causing the grain size to increase. In a portion of the polysilicon film located near the exposed surface of the semiconductor substrate, the grain size becomes relatively small influenced by the crystal defects in the substrate surface. In a portion of the polysilicon film located on the silicon oxide film, the grain size becomes relatively large uninfluenced by the crystal defects. Thus, degradation of electric characteristics is suppressed, and variation in resistance value of the resistance element is alleviated.
Abstract:
A plurality of lands are arranged in rows. The lands in adjacent rows are disposed in a staggered arrangement. A first interconnecting line is pulled out from each of the lands. Each of the lands is wider than the first interconnecting line in the row direction. A plurality of electrical connection sections are arranged in rows. The electrical connection sections in adjacent rows are disposed in a staggered arrangement. The lands are electrically connected with the electrical connection sections so as to overlap. Each of the electrical connection sections is a part of a second interconnecting line, and an insulating layer is formed between the second interconnecting lineing pattern other than the electrical connection sections and the first interconnecting lineing pattern.