Abstract:
The present invention provides a planographic printing plate precursor including on a support a photosensitive layer that contains a polymerizable composition containing a specific binder polymer having a repeating unit of formula (I), an infrared absorbent, a polymerization initiator and a polymerizable compound, 1 wherein R1 represents a hydrogen atom or a methyl group; R2 represents a linking group which includes two or more atoms selected from a carbon atom, a hydrogen atom, an oxygen atom, a nitrogen atom and a sulfur atom and has a number of atoms of 2 to 82; A represents an oxygen atom or nullNR3null in which R3 represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms; and n represents an integer of 1 to 5. The invention also provides a planographic printing plate precursor provided with a specific photosensitive layer with respect to an alkaline developer.
Abstract:
The positive image-forming material comprises a resin including a repeating unit corresponding to a specific monomer having an &agr;-heteromethyl structure.
Abstract:
The present invention provides a polymerizable composition comprising (A) a compound including a polymerizable unsaturated group and (B) a macromolecular compound including, at a side chain thereof, a structure represented by the following general formula (I). The present invention also provides a negative type planographic printing plate precursor responsive to an infrared laser, the precursor being superior in recording sensitivity and printing durability and using the polymerizable compound as a recording layer. General Formula (I)ZnullMnullwherein Z31 represents COCOOnull, COOnull, SO3null or SO2nullNnullnullR where R represents a monovalent organic group and M30 represents an onium cation.
Abstract:
The present invention provides a presensitized plate useful for preparing a lithographic printing plate, which comprises a substrate provided thereon with a light-sensitive layer containing a fluoro-aliphatic group-containing copolymer prepared by copolymerizing at least (A) a fluoroalkyl(meth)acrylate represented by the general formula (I) and (B) a polyoxyalkylene group-containing ethylenic unsaturated monomer. By such a presensitized plate, a lithographic printing plate is provided with a light-sensitive layer whose uniformity and solubility or dispersibility in a developer are improved and which has an ability of forming high contrast images without entraining any reduction of the sensitivity.
Abstract:
On-press developing method of a lithographic printing plate precursor, the lithographic printing plate precursor comprising an image-forming layer which comprises a hydrophobizing precursor, and the method comprising fountain solution-clarifying means which comprises: aggregating a hydrophobizing precursor mingled in a fountain solution and removing the aggregated hydrophobizing precursor by filtration; or adding a coagulant to a fountain solution and filtering the fountain solution.
Abstract:
The present invention relates to a heat mode-compatible planographic printing plate comprising a photosensitive layer which is capable of recording with an infrared laser and formed by applying a photosensitive layer coating solution onto a hydrophilic support and then drying the photosensitive layer coating solution, the photosensitive layer coating solution being obtained by dissolving or dispersing I) an IR absorber, II) a polymerization initiator, and III) a compound having a polymerizable unsaturated group in a solvent, wherein the residual solvent in the photosensitive layer is 5% by weight or less relative to the weight of the photosensitive layer.
Abstract:
A lithographic printing plate precursor is disclosed, which comprises an image-forming layer which contains a hydrophilic resin, an acid precursor and at least one component selected from fine particles containing a compound having a vinyloxy group and microcapsules containing a compound having a vinyloxy group, on a hydrophilic support, which can be development processed on a printing machine.
Abstract:
Provided is a plate-making method for producing a waterless lithographic printing plate, wherein the method comprises: (I) an exposing step of imagewise exposure of the precursor with a laser with a controlled condition that a portion of a laser-exposed area in a photo-thermal conversion layer in the precursor remains in the photo-thermal conversion layer of the finished printing plate, and (II) a developing step of removing a silicone rubber layer in the laser-exposed area to form an image on the printing plate. The precursor to be processed comprises (A) a support, (B) an undercoat layer formed by applying onto the support a coating liquid that contains a water-soluble or water-dispersible polymer and water as a solvent, and then drying the coating liquid, (C) a photo-thermal conversion layer which comprises polyurethane and a photo-thermal converting agent; and (D) a silicone rubber layer, laminated in that order.
Abstract:
The present invention includes an imageable element, which includes a sheet substrate, an imaging layer and a silicone layer, which comprises a crosslinked silicone polymer. The crosslinked silicone polymer is the curing product of a vinyl functional polysiloxane copolymer and a hydrosiloxane compound. The curing is catalyzed by a platinum carbonyl complex. Upon imagewise exposure and development, an imaged element is obtained, which is mounted on a dry printing press containing lithographic ink and used to produce printed stock.
Abstract:
A thermal negative type presensitized plate provided with an image recording layer hardened by infrared rays on an aluminum support, wherein the aluminum support has on the surface thereof, a grain shape with a structure in which a grained structure with medium undulation with a specified aperture diameter and a grained structure with small undulation with a specified aperture diameter are superimposed. For the presensitized plate, contact characteristics between the image recording layer and the support and scum resistance on a non-image area are kept compatible with each other at a high level, a thermal diffusion depression effect by which an energy generated by exposure can be efficiently used to form an image is excellent, and sensitivity is high.