Abstract:
A powder for use in the powder metallurgical manufacture of components is provided. Particularly the subject matter concerns an iron or iron based powder intended for the powder metallurgical manufacturing of components. It is especially suitable for manufacturing of components wherein self-lubricating properties are desired. The subject matter further relates to a method of manufacturing a component from said powder and an accordingly produced component. A diffusion-bonded powder comprising iron or iron-based particles, and particles diffusion-bonded to the iron or iron-based particles is provided. The said particles diffusion-bonded to the iron or iron-based particles may comprise an alloy of Cu and 5% to 15% by weight of Sn. A component is provided which is at least partly formed from such a diffusion-bonded powder.
Abstract:
Glycerol is used as a solvent medium for the precipitation of a complex of nickel and glycerol material. The precipitate is separated from the liquid solvent and dried and calcined in air to produce small (nanometer size) particles characterized by a nickel core encased in a nickel oxide shell. The proportions of nickel core and nickel oxide shell can be controlled by management of the time and temperature of heating in air. Prolonged heating in air can produce nickel oxide particles, or calcining of the precipitate in nitrogen produces nickel particles.
Abstract:
A ceramic sintered product which comprises a first hard phase containing a nitride of titanium, a second hard phase containing at least one of alumina and zirconia, and a binding phase containing nickel; and a method for producing the ceramic sintered product. The ceramic sintered product is lightweight and exhibits good abrasion resistance in a wet atmosphere, and further can be produced at a low cost.
Abstract:
A method and process for at least partially forming a medical device that is at least partially formed of a novel metal alloy which improves the physical properties of the medical device.
Abstract:
The invention relates to a method for sintering in a furnace atmosphere wherein said furnace atmosphere is a hydrogen-free atmosphere comprising nitrogen and carbon monoxide.
Abstract:
Disclosed is a piston for internal-combustion engines, which includes a low thermal-conductive member disposed at the top portion thereof, the low thermal-conductive member including an alloy containing Fe and Mn. The low thermal-conductive member includes a sintered body having 10˜60 mass % of Mn, 2 mass % or less of C, and the balance of Fe and inevitable impurities. Since the piston has the low thermal-conductive member having low thermal conductivity and thermal expansion properties similar to those of the aluminum alloy, which is the base metal of the piston, an increase in the temperature of a combustion chamber and vaporization of fuel are effectively promoted. Furthermore, thermal fatigue failure and separation of the low thermal-conductive member are prevented.
Abstract:
A method for fabricating a magnesium-based composite material, the method includes the steps of: (a) providing a large amount of magnesium-based powder and a large amount of nanoscale reinforcements; (b) uniformly mixing the magnesium-based powder and the nanoscale reinforcements to form a mixture; and (c) compacting the mixture at a high velocity in a protective gas to achieve the magnesium-based composite material. High velocity compaction equipment for fabricating the magnesium-based composite material includes a sealing chamber, a gas pumping device, a mold, and a hammer. The gas pumping device is connected to the sealing chamber. The mold is disposed in the sealing chamber with an aperture formed on the top thereof. The hammer is disposed in the sealing chamber and above the mold, and moving along longitudinal thereof at a controllable ramming speed.
Abstract:
A method for the rapid production of electrode structures such as Cu-SDC anodes for use in direct oxidation solid oxide fuel cells involves co-depositing a copper-containing material and a ceramic by plasma spraying to form a coating on a substrate. Layers of CuO-SDC have been co-deposited by air plasma spraying, followed by in-situ reduction of the CuO to Cu in the anodes. Materials having catalytic properties, such as cobalt, may also be incorporated in the structures. Controlled compositional or microstructural gradients may be applied to optimize the microstructure and composition of the coatings.
Abstract:
A composition for forming a compact includes a powder mainly composed of an inorganic material, a first resin being decomposable by an action of an alkaline gas, and a binder including the first resin. The first resin is decomposed and removed from the compact formed by molding the composition for forming a compact by exposing the compact to a first atmosphere containing an alkaline gas so as to obtain a degreased body.
Abstract:
A sleeve for a fluid-dynamic bearing is manufactured by molding to obtain a molded part, degreasing the molded part to obtain a degreased part, and sintering the degreased part. The molding includes placing a resin core having protrusions on an outer circumference thereof for transferring and forming dynamic-pressure generating grooves on the sleeve into a mold having a cavity corresponding to a shape of the sleeve, and injecting a molding material prepared by mixing a binder and metal or ceramic powders. The degreasing includes preparatory degreasing the molded part to remove a portion of the binder, and further degreasing the molded part, from which the portion of the binder is removed, by heating the molded part in a sintering furnace to thermally decompose the residual portion of the binder and the core. The sintering includes further heating the degreased part to sinter the metal powders or the ceramic powders.