Abstract:
Disclosed is an easily assembled and disassembled stationary particulate bed dual electrode for recovering metal values from electrolytic solutions. The electrode comprises two assemblies adapted for mating with one another. Each assembly has a perforated flow distributing plate and a basket-like compartment for holding carbonaceous, conductive particles onto which the metal values deposit. This compartment is quickly and easily disassembled for removal of the metal-clad particulate bed.
Abstract:
An apparatus for degerminating fluids by the use of an electrolytic cell, a pair of main electrodes opposed in the electrolytic cell to each other, a voltage source connected to the main electrodes, and a plurality of auxiliary electrodes disposed between the main electrodes. The main electrodes are biased in such a way that the fluid flows through a region of varying potential thereby effectively increasing the degerminating rate of the cell. The main electrodes cover the entire cross section of flow, they are provided with openings to allow the passage of the fluid. The auxiliary electrodes may be connected to parts of the overall voltage thereby providing an electrolytic cell which may be directly powered by solar energy.
Abstract:
An improved method and apparatus for continuously agglomerating solids of colloidal size of larger suspended in a liquid is disclosed. The process comprises passing the liquid between spaced electrode plates in the presence of a fluidized bed of conductive particles, and subjecting said liquid suspension to an electric field from alternating current applied across said electrodes through the conductive particles of said bed. The turbulence of the particles in said bed has been found to improve conductivity and current efficiency, minimize electrode erosion, and by a mechanical, scrubbing action of the bed particles, minimize fouling or scaling of the electrodes so that the suspending forces of said solids are rapidly and efficiently broken. The agglomerated solids may then be separated from the liquid by conventional means such as skimming, settling, flotation and the like.
Abstract:
An installation for the treatment of metals pickling solutions is disclosed. The invention provides for solutions to be treated by electrodialysis in a tank which is divided up to form sets of three compartments. Anode and cathode compartments in the form of removable cases are arranged alternately with spaces therebetween defining central compartments. In use, according to a preferred method of the invention, anolyte flows through the anode compartments while the picklng solution flows through the cathode and central compartments. Flow through the compartments may be either in series or in parallel.
Abstract:
An electrolytic filter, consisting of perforated conductive electrodes isolated by a separator, is adapted to filter at the first electrode or cathode suspended materials, including colloidal metal particles such a silver or gold made colloidal by borohydride, zinc, iron, etc., reduction or sulfide, etc., precipitation of metallic ion-containing solutions. The method of recovery involves use of the electrolytic filter and a composition including the finely divided metal containing waste solution in combination with floc forming compounds such as alkaline earth metal hydroxide, and negative charge imparting additives such as soluble phosphates and anionic resin flocculating agents. Preferably, the filter includes a floc circulating chamber in which the incoming liquid assumes a vertical toroidal flow pattern.
Abstract:
The specification describes an electrolytic cell for the treatment of water, comprising a closed container with a lower inlet opening and an upper outlet opening for the water and a cathode and an anode. In the interior of the electrolytic cell particles are located whose density is higher than that of water and which are prevented from leaving the electrolytic cell by gratings adjacent to the inlet and the outlet.
Abstract:
The invention provides an electrode for use in an electrochemical reactor. The electrode comprising a plurality of carbon fibers in close proximity to one another, each of the fibers being in electrical contact with at least several of the other carbon fibers for transmitting an electrical potential substantially throughout the electrode when the electrode is in use in the reactor.
Abstract:
An electrolytic drainage treating apparatus is provided to treat a drainage containing a suspension of contaminated compound whereby the suspension is flocculated and removed by aluminum ions or iron ions eluted by electrolysis. The electrolytic drainage treating apparatus is equipped with a high speed electrolyzer comprising an anode and a cathode having a thin gap therebetween through which a drainage is forcibly passed as an electrolytic solution. The anode material such as aluminum and iron is eluted as ions by the electrolysis caused by passing electric current across the gap. The width of the gap between the anode and the cathode is controlled. The high speed electrolyzer is effectively used for various electrolytic treatments.
Abstract:
This invention relates to an electrolytic cell for inactivating and destroying fluid borne pathogenic materials. The cell comprises layers of permeable electrically conductive material separated by layers of permeable electrical insulation. The conductive layers act as the cell electrodes which are connected to a source of alternating current, having a current potential ranging from about 0.1 to about 20 volts with frequencies to about 0.1 to about 10 cycles per second. A suitable filter housing, surrounds the cell and is arranged so that the pathogen containing fluid passes through the permeable electrode layers of the cell. The pathogenic materials are therefore subjected to the electrical potential set up between the layers and are inactivated or destroyed. A cell according to a preferred embodiment of the invention comprises a plurality of layers of conductive and insulative material disposed around a perforated core or tube to thereby form a cylindrical cell body.
Abstract:
The present invention relates in general to a new and improved process and apparatus for removing metallic ions from an electrolytic solution, and it relates more particularly to a process and apparatus which may be used to economically purify an electrolytic solution containing only minute amounts of metallic ions. Those knowledgable in the metal plating art will readily understand the application of this process and apparatus for the final treatment of metal finishing waste fluids. As is explained more fully hereinafter, the process and apparatus of the present invention is also effective in removing organic compounds and phosphates from the electrolytic solution under treatment.