Abstract:
Robotic medical instrument systems and associated methods utilizing an optical fiber sensors such as Bragg sensor optical fibers. In one configuration, an optical fiber is coupled to an elongate instrument body and includes a fiber core having one or more Bragg gratings. A controller is configured to initiate various actions in response thereto. For example, a controller may generate and display a graphical representation of the instrument body and depict one or more position and/or orientation variables thereof, or adjust motors of an instrument driver to reposition the catheter or another instrument. Optical fibers having Bragg gratings may also be utilized with other system components including a plurality of working instruments that are positioned within a sheath lumen, an instrument driver, localization sensors, and/or an image capture device, and may also be coupled to a patient's body or associated structure that stabilizes the body.
Abstract:
A method for measuring bending is provided. The method includes receiving a reflected signal from a strain sensor provided on an optical fiber; determining a spectral profile of the reflected signal; and determining bending of the optical fiber based on a comparison of the spectral profile of the reflected signal with a predetermined spectral profile.
Abstract:
A method for mapping an internal structure of a patient with an elongate body is provided. The method includes detecting, at a plurality of instances, contact between a distal portion of an elongate body and an internal structure of the patient; determining a plurality of geometric configurations of the distal portion, the plurality of geometric configurations corresponding to the plurality of instances of contact between the distal portion and the internal structure; determining a plurality of positions of the distal portion, the plurality of positions corresponding to the plurality of geometric configurations; and generating a map of the internal structure based on the plurality of positions of the distal portion.
Abstract:
An instrument system that includes an elongate body, an optical fiber and a controller is provided. The optical fiber is at least partially separate from the elongate body. The controller is operatively coupled to the elongate body and to the optical fiber and the controller is adapted to receive a signal from the optical fiber, detect movement of the optical fiber based on the signal; and update a position of the elongate body relative to the optical fiber based on the detected movement.
Abstract:
Speckle is reduced by compounding. 1.25, 1.5, 1.75 and 2D arrays are used to obtain frames of data representing a same scan plane, but with different elevation spatial frequency content. The elevation aperture for one frame of data is different than an elevation aperture of another frame of data. The frames of data responsive to the different elevation apertures are compounded, reducing speckle.
Abstract:
An improvement to the method for harmonic imaging including the steps of (a) transmitting ultrasonic energy at a fundamental frequency and (b) receiving reflected ultrasonic energy at a harmonic of the fundamental frequency is provided. The transmitting step includes the step of: applying the plurality of waveforms to a respective plurality of transducer elements, a first waveform of the plurality of waveforms characterized by a first value of a harmonic power ratio, waveforms transmitted from the transducer elements and corresponding to the plurality of waveforms summing as an acoustic waveform substantially at the point, the acoustic waveform characterized by a second value of the harmonic power ratio less than the first value. The imaging method can also include a step for subdividing the transmit aperture into two or more subapertures, each subaperture having at least four adjacent transducer elements. The subapertures are phased differently with respect to one another to selectively reduce either fundamental components or harmonic components of echoes from tissue. These techniques can be used to improve contrast agent harmonic imaging as well as tissue harmonic imaging, depending upon the phase shift selected.
Abstract:
An ultrasound system and method are provided for improving resolution and operation. The system applies different imaging parameters within and outside a region of interest in an ultrasound image to improve spatial and/or temporal resolution inside a region of interest. The system also increases an apparent frame rate within a region of interest in an ultrasound-image frame by generating a motion-compensated interpolated image based on measured motion. The ultrasound imaging system also performs a method for automatically adjusting ultrasound imaging parameters in at least a portion of an ultrasound image in response to transducer or image motion to improve spatial or temporal resolution. With the measured motion, the system can also alter an operating mode of an ultrasound transducer array in response to an absence of transducer motion. Further, the system corrects distortion in an acquired ultrasound image caused by transducer or image motion.