Abstract:
A Random Access Memory (RAM) is provided. The RAM includes a plurality of word-line drivers, at least a first tracking transistor and a second tracking transistor. Each word-line driver has an input node receiving a decoding signal, a power node receiving an operation voltage and a driving node driving a word-line. In an embodiment, the first tracking transistor has two channel terminal nodes respectively coupled to the driving node of one of the word-line driver and a channel terminal node of the second tracking transistor; wherein the first tracking transistor has electronic characteristics tracking those of a driving transistor of word-line driver, and the second tracking transistor has electronic characteristics tracking those of pass-gate transistor(s) in each cell of the RAM.
Abstract:
Techniques are provided for asymmetrical SRAM cells which can be improved, for example, by providing one or more of improved read stability and improved write performance and margin. A first inverter and a second inverter are cross-coupled and configured for selective coupling to true and complementary bit lines under control of read and write word lines. The first inverter is formed by a first, n-type, FET (NFET) and a second, p-type, FET (PFET). Process and/or technology approaches can be employed to adjust the relative strength of the FETS to obtain, for example, read margin, write margin, and/or write performance improvements.
Abstract:
Techniques are provided for back-gate control in an asymmetrical memory cell. In one aspect, the cell includes five transistors and can be employed for static random access memory (SRAM) applications. An inventive memory circuit can include a plurality of bit line structures, a plurality of word line structures that intersect the plurality of bit line structures to form a plurality of cell locations, and a plurality of cells located at the plurality of cell locations. Each cell can be selectively coupled to a corresponding one of the bit line structures under control of a corresponding one of the word line structures. Each cell can include a first inverter having first and second field effect transistors (FETS) and a second inverter with third and fourth FETS that is cross-coupled to the first inverter to form a storage flip-flop. One of the FETS in the first inverter can be configured with independent front and back gates and can function as both an access transistor and part of one of the inverters.
Abstract:
A dynamic logic gate has an asymmetrical dual-gate PFET device for charging a dynamic node during a pre-charge phase of a clock. A logic tree evaluates the dynamic node during an evaluate phase of the clock. The front gate of the asymmetrical dual-gate PFET device is coupled to the clock signal and the back gate is coupled to the ground potential of the power supply. When the clock is a logic zero both the front gate and the back gate are biased ON and the dynamic node charges with maximum current. The clock signal transitions to a logic one during the evaluation phase of the clock turning OFF the front gate. The back gate remains ON and the asymmetrical dual-gate PFET device operates as a keeper device with a current level sufficient to counter leakage on the dynamic node.
Abstract:
Disclosed are a multi-threshold CMOS circuit and a method of designing such a circuit. The preferred embodiment combines an MTCMOS scheme and a hybrid SOI-epitaxial CMOS structure. Generally, the logic transistors (both nFET and pFET) are placed in SOI, preferably in a high-performance, high density UTSOI; while the headers or footers are made of bulk epitaxial CMOS devices, with or without an adaptive well-biasing scheme. The logic transistors are based on (100) SOI devices or super HOT, the header devices are in bulk (100) or (110) pFETs with or without an adaptive well biasing scheme, and the footer devices are in bulk (100) NFET with or without an adaptive well biasing scheme.
Abstract:
The present invention provides a 6T SRAM including a first inverter, a second inverter, a first pass-gate transistor, and a second pass-gate transistor. The first inverter zs a first pull-up transistor and a first pull-down transistor. The second inverter includes a second pull-up transistor and a second pull-down transistor. The gate of the second pull-up transistor is coupled with the gate of the second pull-down transistor, and the drain of the second pull-up transistor is coupled with the drain of the second pull-down transistor. The SRAM can measure the trip voltage, the read disturb voltage, and the write margin by controlling the first bit line, the second bit line, the GND, the first word line, and the voltage source without changing of the physic parameter of the SRAM.
Abstract:
The present invention proposes a gate oxide breakdown-withstanding power switch structure, which is connected with an SRAM and comprises a first CMOS switch and a second CMOS switch respectively having different gate-oxide thicknesses or different threshold voltages. The CMOS switch, which has a normal gate-oxide thickness or a normal threshold voltage, provides current for the SRAM to wake up the SRAM from a standby or sleep mode to an active mode. The CMOS switch, which has a thicker gate-oxide thickness or a higher threshold voltage, provides current for the SRAM to work in an active mode. The present invention prevents a power switch from gate-oxide breakdown lest noise margin, stabilization and performance of SRAM be affected.
Abstract:
A high load driving device is disclosed. The driving device comprises an inverter receiving a digital voltage. The inverter reverses the digital voltage, and then sends out it. The output terminal of the inverter is coupled to a capacitor, a first P-type field-effect transistor (FET), a second P-type FET, a first N-type FET, and a third N-type FET. A push-up circuit is composed of these transistors and a second N-type FET and coupled to a P-type push-up FET. A load is coupled to a high voltage through the P-type push-up FET. When the digital voltage rises from a low level to a high level, the push-up circuit utilizes the original voltage drop of the capacitor to control the P-type push-up FET, whereby the gate voltage of the P-type push-up FET is at a low stabilization voltage that is lower than the ground potential. Then, the load is driven rapidly.
Abstract:
A disturb-free static random access memory cell includes: a latch circuit having a first access terminal and a second access terminal; a first switching circuit having a first bit transferring terminal coupled to the first access terminal, a first control terminal coupled to a first write word line, and a second bit transferring terminal; a second switching circuit having a third bit transferring terminal coupled to the second access terminal, a second control terminal coupled to a second write word line, and a fourth bit transferring terminal coupled to the second bit transferring terminal; a third switching circuit having a fifth bit transferring terminal coupled to the fourth bit transferring terminal, a third control terminal coupled to a word line, and a sixth bit transferring terminal coupled to a bit line; and a sensing amplifier coupled to the bit line, for determining a bit value appearing at the bit line.
Abstract:
Asymmetrical SRAM cells are improved by providing one or more of improved read stability and improved write performance and margin. A first inverter and a second inverter are cross-coupled and configured for selective coupling to true and complementary bit lines under control of read and write word lines. The first inverter is formed by a first, n-type, FET (NFET) and a second, p-type, FET (PFET). Process and/or technology approaches can be employed to adjust the relative strength of the FETS to obtain, for example, read margin, write margin, and/or write performance improvements.