Abstract:
Systems and methods for performing a PASR (partial array self-refresh) operation wherein a refresh operation for recharging stored data is performed on a portion (e.g., ½ ¼, ⅛, or {fraction (1/16)}) of one or more selected memory banks comprising a cell array in a semiconductor memory device. In one aspect, a PASR operation is performed by (1) controlling the generation of row addresses by a row address counter during a self-refresh operation and (2) controlling a self-refresh cycle generating circuit to adjust the self-refresh cycle output therefrom. The self-refresh cycle is adjusted in a manner that provides a reduction in the current dissipation during the PASR operation. In another aspect, a PASR operation is performed by controlling one or more row addresses corresponding to a partial cell array during a self-refresh operation, whereby a reduction in a self-refresh current dissipation is achieved by blocking the activation of a non-used block of a memory bank.
Abstract:
Systems and methods for performing a PASR (partial array self-refresh) operation wherein a refresh operation for recharging stored data is performed on a portion (e.g., ½ ¼, ⅛, or {fraction (1/16)}) of one or more selected memory banks comprising a cell array in a semiconductor memory device. In one aspect, a PASR operation is performed by (1) controlling the generation of row addresses by a row address counter during a self-refresh operation and (2) controlling a self-refresh cycle generating circuit to adjust the self-refresh cycle output therefrom. The self-refresh cycle is adjusted in a manner that provides a reduction in the current dissipation during the PASR operation. In another aspect, a PASR operation is performed by controlling one or more row addresses corresponding to a partial cell array during a self-refresh operation, whereby a reduction in a self-refresh current dissipation is achieved by blocking the activation of a non-used block of a memory bank.
Abstract:
Integrated circuit memory devices (e.g., SDRAM) include an input buffer and a power reduction control circuit which disables the input buffer in response to an inactive chip select signal (CSB). The input buffer comprises a first differential amplifier having a first input electrically coupled to an input signal line (PX) and a first pull-up transistor electrically connected in series between a pull-up reference node of the first differential amplifier and a power supply signal line (e.g., Vcc). The output of the power reduction control circuit is electrically connected to a gate electrode of the first pull-up transistor. The first pull-up transistor can be turned off in response to an inactive chip select signal (CSB=1), to thereby electrically disconnect the first differential amplifier from its power supply. The input buffer may also comprise a first pull-down transistor electrically connected in series between an output of the first differential amplifier and a reference potential signal line (e.g., GND) and the output of the power reduction control circuit is electrically connected to a gate electrode of the first pull-down transistor.
Abstract:
A synchronous dynamic random access memory capable of accessing data in a memory cell array therein in synchronism with a system clock from an external system such as a central processing unit (CPU). The synchronous DRAM receives an external clock and includes a plurality of memory banks each including a plurality of memory cells and operable in either an active cycle or a precharge cycle, a circuit for receiving a row address strobe signal and latching a logic level of the row address strobe signal in response to the clock, an address input circuit for receiving an externally generated address selecting one of the memory banks, and a circuit for receiving the latched logic level and the address from the address input circuit and for outputting an activation signal to the memory bank selected by the address and an inactivation signals to unselected memory banks when the latched logic level is a first logic level, so that the selected memory bank responsive to the activation signal operates in the active cycle while the unselected memory banks responsive to the inactivation signals operate in the precharge cycle.
Abstract:
A synchronous dynamic random access memory capable of accessing data in a memory cell array therein in synchronism with a system clock from an external system such as a central processing unit (CPU). The synchronous DRAM receives an external clock and includes a plurality of memory banks each including a plurality of memory cells and operable in either an active cycle or a precharge cycle, a circuit for receiving a row address strobe signal and latching a logic level of the row address strobe signal in response to the clock, an address input circuit for receiving an externally generated address selecting one of the memory banks, and a circuit for receiving the latched logic level and the address from the address input circuit and for outputting an activation signal to the memory bank selected by the address and an inactivation signals to unselected memory banks when the latched logic level is a first logic level, so that the selected memory bank responsive to the activation signal operates in the active cycle while the unselected memory banks responsive to the inactivation signals operate in the precharge cycle.
Abstract:
A synchronous dynamic random access memory capable of accessing data in a memory cell array therein in synchronism with a system clock from an external system such as a central processing unit (CPU). The synchronous DRAM receives an external clock and includes a plurality of memory banks each including a plurality of memory cells and operable in either an active cycle or a precharge cycle, a circuit for receiving a row address strobe signal and latching a logic level of the row address strobe signal in response to the clock, an address input circuit for receiving an externally generated address selecting one of the memory banks, and a circuit for receiving the latched logic level and the address from the address input circuit and for outputting an activation signal to the memory bank selected by the address and an inactivation signals to unselected memory banks when the latched logic level is a first logic level, so that the selected memory bank responsive to the activation signal operates in the active cycle while the unselected memory banks responsive to the inactivation signals operate in the precharge cycle.
Abstract:
This invention provides an input protection device having, within a body of semiconductor material, parallel, doped regions providing an input circuit and a charge collection area for protecting against static electricity charges at the input stage of semiconductor devices, the device including a low resistance layer formed on the body overlying the input circuit which is connected to an input pad on the body. Shortening the input signal delay time is thus attained.