Abstract:
Disclosed herein is an apparatus for producing 3D sound. The apparatus includes a determination unit, a mono sound spreading unit, a stereo sound spreading unit, a selection unit, and a 3D sound accelerator. The determination unit receives a source sound file and determines whether the source sound file is mono or stereo. The mono sound spreading unit converts the source sound into pseudo-stereo sound and performs sound spreading on the pseudo-stereo sound, if the source sound is determined to be mono. The stereo sound spreading unit performs sound spreading on the source sound, if the source sound is determined to be stereo. The selection unit receives the output of the mono sound spreading unit or stereo sound spreading unit, and transfers the output to headphones if the headphone reproduction has been selected. The 3D sound accelerator receives the output from the selection unit if speaker reproduction has been selected, removes crosstalk from the output, and transfers the crosstalk-free output to speakers.
Abstract:
A marker-free motion capture apparatus having a function of correcting a tracking error and a method thereof are disclosed. The apparatus includes: a grouping unit for grouping feature candidates located within a threshold distance on a three-dimensional space at a previous time; a feature point selecting unit for generating a first curve connecting a predetermined number of feature points, and selecting a feature candidate closest to the first curve as a feature point of a previous time; a feature point correcting unit for generating a second curve connecting a predetermined number of feature points including the feature point of a previous time, and correcting a feature point of a current time calculated based on a Kalman filtering scheme using the second curve; and a controlling unit for calculating a location of a feature point of each time using a Kalman filtering scheme and generally controlling the marker-free motion capture apparatus.
Abstract:
A curve designing system/method is provided. When similar curves are to be generated by evenly mixing features of given sample curves, the method of the present invention can control the extent of mixing features, smoothness, and size. The technology of the present invention can be applied to designing curve and curved surface in the fields of computer graphics and Computer-Aided Design (CAD).
Abstract:
Provided are a system and a method that automatically produce natural locomotion animation without an applicable discontinuity portion with respect to various moving distance and timing by using motion capture data. The system includes a motion capture data storage, a simulation calculator, and an animation calculator. The method includes defining a speed calculated in the moving motion capture data as a maximum moving speed of a simulation in order to calculate an entire moving distance, a stopped time when starting and arriving, and a stopped time before starting and after arriving regarding to respective characters; extracting a portion of the arriving motion capture data to be appropriate for the entire moving distance in order to produce the locomotion animation when the entire moving distance is less than a moving distance of the arriving motion capture data; and satisfying an entire time corresponding to an entire motion of animation.
Abstract:
Provided is an apparatus for sharpening a blurred enlarged image, including a digital image output unit for outputting a digital image input through a digital image input unit. The apparatus includes a digital image processing unit for calculating a primary edge direction of the digital image input through the digital image unit to perform enlarging and edge sharpening on the input digital image. Accordingly, blurring is removed from the enlarged image without ringing or an artifact using an adaptive edge sharpening method, so that the enlarged image can be sharpened.
Abstract:
The present invention provides an actuator for AGCS of a vehicle having a piston reciprocating rectilinearly, a screw bar engaged with the rear portion of the piston and rotating in place, and a drive motor rotating the screw bar in place, the actuator comprising an impact buffering means for buffering a load in the axial direction and an impact absorbing means for absorbing a load in the vertical direction to the axis, the impact buffering means and impact absorbing means being provided on the boundary portion between the screw bar and the motor.
Abstract:
A thermometer code generator includes n bit storing stages that are coupled to each other, where n is an integer greater than 1, and the n bit storing stages store a thermometer code, and are adapted to increase the stored thermometer code by 1 in synchronization with a clock signal when an up signal is active, to decrease the stored thermometer code by 1 in synchronization with the clock signal when a down signal is active, and to maintain the stored thermometer code in synchronization with the clock signal when both of the up signal and the down signal are inactive.
Abstract:
Provided herein is a method and apparatus for disrupting cells and purifying nucleic acids in a single chip. The method comprises irradiating a chip with a laser beam, wherein the chip comprises a solid support on which a cell lysis enhancing metal oxide layer, and a cell binding metal oxide layer have been deposited.
Abstract:
A three-dimensional animation system using evolutionary computation includes a gene determination unit and a motion generation unit. The gene determination unit calculates modified gene information by receiving at least one genes and modifying the genes evolutionarily. The motion generation unit receives motion data and modifies the motion data based on the modified gene information. A three-dimensional animation method is also disclosed.
Abstract:
Provided is a method of separating particles, the method comprising: forming a first chamber and a second chamber separated by an interface with a pore, wherein the first and second chambers have electrodes with different polarities; placing particles to which a target biomolecule is bound from particles to which the target biomolecule is not bound in the first chamber; applying a voltage which has the same polarity as that of the target biomolecule to the electrode of the first chamber, and a voltage which has an opposite charge to that of the target biomolecule to the electrode of the second chamber; and translocating only the particles to which the target biomolecule is bound from the first chamber to the second chamber through the pore. Conventionally, the size of a pore is used to separate biomolecules. However, effective separation is difficult to achieve because the manufacture of a pore with a diameter of less than 10 nm, small enough to separate biomolecule, is not easy. Therefore, signal separation and data analysis must be required. However, in the present method, physical movement induced by the charge of biomolecules is used to effectively separate the biomolecules, thus obtaining a high signal to noise ratio. As a result, additional data analysis is not required.