Abstract:
A method for inspection of a sample includes directing an excitation beam to impinge on an area of a planar sample that includes a feature having sidewalls perpendicular to a plane of the sample, the sidewalls having a thin film thereon. An intensity of X-ray fluorescence (XRF) emitted from the sample responsively to the excitation beam is measured, and a thickness of the thin film on the sidewalls is assessed based on the intensity. In another method, the width of recesses in a surface layer of a sample and the thickness of a material deposited in the recesses after polishing are assessed using XRF.
Abstract:
A method for inspection includes directing a beam of X-rays to impinge upon an area of a sample containing first and second features formed respectively in first and second thin film layers, which are overlaid on a surface of the sample. A pattern of the X-rays diffracted from the first and second features is detected and analyzed in order to assess an alignment of the first and second features.
Abstract:
A method for analysis of a sample includes directing a beam of radiation to impinge on a target area on a surface of the sample along a beam axis at a plurality of different elevation angles. For each of the different angles, a respective offset of the beam in a direction transverse to the beam axis is determined. While sensing the radiation scattered from the sample at each of the different elevation angles in succession, a transverse correction is applied to at least one of the beam and the sample in order to compensate for the respective offset at each of the different elevation angles.
Abstract:
A method for inspection includes directing a beam of X-rays to impinge upon an area of a sample containing first and second features formed respectively in first and second thin film layers, which are overlaid on a surface of the sample. A pattern of the X-rays diffracted from the first and second features is detected and analyzed in order to assess an alignment of the first and second features.
Abstract:
A method for testing a material applied to a surface of a sample includes directing an excitation beam, having a known beam-width and intensity cross-section, onto a region of the sample. An intensity of X-ray fluorescence emitted from the region responsively to the excitation beam is measured. A distribution of the material within the region is estimated, responsively to the measured intensity of the X-ray fluorescence and to the intensity cross-section of the excitation beam, with a spatial resolution that is finer than the beam-width.
Abstract:
A method for X-ray analysis of a sample includes directing a beam of X-rays to impinge on an area of a periodic feature on a surface of the sample and receiving the X-rays scattered from the surface in a reflection mode so as to detect a spectrum of diffraction in the scattered X-rays as a function of azimuth. The spectrum of diffraction is analyzed in order to determine a dimension of the feature.
Abstract:
A method for testing a material applied to a surface of a sample includes directing an excitation beam, having a known beam-width and intensity cross-section, onto a region of the sample. An intensity of X-ray fluorescence emitted from the region responsively to the excitation beam is measured. A distribution of the material within the region is estimated, responsively to the measured intensity of the X-ray fluorescence and to the intensity cross-section of the excitation beam, with a spatial resolution that is finer than the beam-width.
Abstract:
A method for inspection of a sample includes directing a beam of X-rays toward a sample and configuring an array of detector elements to capture the X-rays scattered from the sample. The sample is shifted in a direction parallel to the axis of the array between at least first and second positions, which positions are separated one from another by an increment that is not an integer multiple of the pitch of the array. At least first and second signals are generated by the detector elements responsively to the X-rays captured thereby while the sample is in at least the first and second positions, respectively. The first and second signals are combined so as to determine an X-ray scattering profile of the sample as a function of position along the axis.
Abstract:
A process for measuring overlay misregistration during semiconductor wafer fabrication including the use of an interferometric microscope in combination with a camera, a wafer transport stage, and data processing electronics to form an inspection system which can utilize either broadband or narrowband light, and large or small numerical aperture (NA) to develop a series of interference images taken at different Z (vertical) planes relative to the surface under investigation or P (pathlength) positions relative to interferometer arm difference. The data in these planes is then used to calculate the magnitude and phase of the mutual coherence between the object wave and the reference wave for each pixel in the image planes, and synthetic images are formed, the brightness of which is proportional to either the complex magnitude (the Magnitude Contrast Image or MCI) or the phase of the mutual coherence as the optical pathlength (the Phase Contrast Image or PCI) is varied. The difference between synthetic images relating to target attribute position and bullet attribute position are then used as a means of detecting misregistration between the processing layer including the bullet attribute and the processing layer including the target attribute.
Abstract:
A method whereby the image produced in a coherence probe microscope is modified by means of a certain specific additive electronic transformation for the purpose of improving the measurement of selected features. The technique improves measurement accuracy on optically complex materials, in particular it improves the accuracy of linewidth measurement on semiconductor linewidths.