Abstract:
An integrated circuit includes a processor and an exact-match flow table structure. A first packet is received onto the integrated circuit. The packet is determined to be of a first type. As a result of this determination, execution by the processor of a first sequence of instructions is initiated. This execution causes bits of the first packet to be concatenated and modified in a first way, thereby generating a first Flow Id. The first Flow Id is an exact-match for the Flow Id of a first stored flow entry. A second packet is received. It is of a first type. As a result, a second sequence of instructions is executed. This causes bits of the second packet to be concatenated and modified in a second way, thereby generating a second Flow Id. The second Flow Id is an exact-match for the Flow Id of a second stored flow entry.
Abstract:
A chained Command/Push/Pull (CPP) bus command is output by a first device and is sent from a CPP bus master interface across a set of command conductors of a CPP bus to a second device. The chained CPP command includes a reference value. The second device decodes the command, in response determines a plurality of CPP commands, and outputs the plurality of CPP commands onto the CPP bus. The second device detects when the plurality of CPP commands have been completed, and in response returns the reference value back to the CPP bus master interface of the first device via a set of data conductors of the CPP bus. The reference value indicates to the first device that an overall operation of the chained CPP command has been completed.
Abstract:
A pipelined run-to-completion processor executes a conditional skip instruction. If a predicate condition as specified by a predicate code field of the skip instruction is true, then the skip instruction causes execution of a number of instructions following the skip instruction to be “skipped”. The number of instructions to be skipped is specified by a skip count field of the skip instruction. In some examples, the skip instruction includes a “flag don't touch” bit. If this bit is set, then neither the skip instruction nor any of the skipped instructions can change the values of the flags. Both the skip instruction and following instructions to be skipped are decoded one by one in sequence and pass through the processor pipeline, but the execution stage is prevented from carrying out the instruction operation of a following instruction if the predicate condition of the skip instruction was true.
Abstract:
A method for receiving a packet descriptor associated with a packet and a queue number indicating a queue stored within a memory unit, determining a priority level of the packet and an amount of free memory available in the memory unit. Applying a global drop probability to generate a global drop indicator and applying a queue drop probability to generate a queue drop indicator. The global drop probability is a function of the amount of free memory. The queue drop probability is a function of instantaneous queue depth or drop precedence value. The packet is transmitted whenever the priority level is high. When the priority level is low, the packet is transmitted when both the global drop indicator and the queue drop indicator are a logic low value. When the priority level is low, the packet is not transmitted when either drop indicator is a logic low value.
Abstract:
Within a networking device, packet portions from multiple PDRSDs (Packet Data Receiving and Splitting Devices) are loaded into a single memory, so that the packet portions can later be processed by a processing device. Rather than the PDRSDs managing and handling the storing of packet portions into the memory, a packet engine is provided. The PDRSDs use a PPI (Packet Portion Identifier) Addressing Mode (PAM) in communicating with the packet engine and in instructing the packet engine to store packet portions. The packet engine uses linear memory addressing to write the packet portions into the memory, and to read the packet portions from the memory.
Abstract:
An integrated circuit includes an input port, a first Characterize/Classify/Table Lookup and Multiplexer Circuit (CCTC), a second CCTC, and an exact-match flow table structure. The first and second CCTCs are structurally identical. The first and second CCTs are coupled together serially. In one example, an incoming packet is received onto the integrated circuit via the input port and packet information is supplied to a first characterizer of the first CCTC. Information flow passes through the classifier of the first CCT, through the Table Lookup and Multiplexer Circuit (TLMC) of the first CCT, through the characterizer of the second CCT, through the classifier of the second CCT, and out of the TLMC of the second CCT in the form of a Flow Id. The Flow Id is supplied to the exact-match flow table structure to determine whether an exact-match for the Flow Id is found in the flow table structure.
Abstract:
Within a networking device, packet portions from multiple PDRSDs (Packet Data Receiving and Splitting Devices) are loaded into a single memory, so that the packet portions can later be processed by a processing device. Rather than the PDRSDs managing and handling the storing of packet portions into the memory, a packet engine is provided. The PDRSDs use a PPI (Packet Portion Identifier) Addressing Mode (PAM) in communicating with the packet engine and in instructing the packet engine to store packet portions. A PDRSD requests a PPI from the packet engine in a PPI allocation request, and is allocated a PPI by the packet engine in a PPI allocation response, and then tags the packet portion to be written with the PPI and sends the packet portion and the PPI to the packet engine.
Abstract:
Within a networking device, packet portions from multiple PDRSDs (Packet Data Receiving and Splitting Devices) are loaded into a single memory, so that the packet portions can later be processed by a processing device. Rather than the PDRSDs managing the storing of packet portions into the memory, a packet engine is provided. The PDRSDs use a PPI addressing mode in communicating with the packet engine and in instructing the packet engine to store packet portions. A PDRSD requests a PPI from the packet engine, and is allocated a PPI by the packet engine, and then tags the packet portion to be written with the PPI and sends the packet portion and the PPI to the packet engine. Once the packet portion has been processed, a PPI de-allocation command causes the packet engine to de-allocate the PPI so that the PPI is available for allocating in association with another packet portion.
Abstract:
An integrated circuit includes a pool of processors and a Tripwire Data Merging and Collision Detection Circuit (TDMCDC). Each processor has a special tripwire bus port. Execution of a novel tripwire instruction causes the processor to output a tripwire value onto its tripwire bus port. Each respective tripwire bus port is coupled to a corresponding respective one of a plurality of tripwire bus inputs of the TDMCDC. The TDMCDC receives tripwire values from the processors and communicates them onto a consolidated tripwire bus. From the consolidated bus the values are communicated out of the integrated circuit and to a debug station. If more than one processor outputs a valid tripwire value at a given time, then the TDMCDC asserts a collision bit signal that is communicated along with the tripwire value. Receiving tripwire values onto the debug station facilitates use of the debug station in monitoring and debugging processor code.
Abstract:
A circuit that receives queue number that indicates a queue stored within a memory unit and a packet descriptor that includes a drop precedence value, and in response determines an instantaneous queue depth of the queue. The instantaneous queue depth and drop precedence value are used to determine a drop probability. The drop probability is used to randomly determine if the packet descriptor should be stored in the queue. When a packet descriptor is not stored in a queue the packet associated with the packet descriptor is dropped. The queue has a first queue depth range. A first drop probability is used when the queue depth is within the first queue depth range and the drop precedence is equal to the first value. A second drop probability is used when the queue depth is within the first queue depth range and the drop precedence equal to a second value.