Abstract:
The present invention provides a downhole method and apparatus using a flexural mechanical resonator, for example, a tuning fork to provide real-time direct measurements and estimates of the viscosity, density and dielectric constant of formation fluid or filtrate in a hydrocarbon producing well. The present invention additionally provides a method and apparatus for monitoring cleanup from a leveling off of viscosity or density over time, measuring or estimating bubble point for formation fluid, measuring or estimating dew point for formation fluid, and determining the onset of asphaltene precipitation. The present invention also provides for intercalibration of plural pressure gauges used to determine a pressure differential downhole. A hard or inorganic coating is placed on the flexural mechanical resonator (such as a tuning fork) to reduce the effects of abrasion from sand particles suspended in the flowing fluid in which the flexural mechanical resonator is immersed.
Abstract:
A cooling system in which an electronic device or other component is cooled by using one or more solid sources of liquid vapor (such as polymeric absorbents, hydrates or desiccants that desorb water at comparatively low temperature) in conjunction with one or more high-temperature vapor sorbents or desiccants that effectively transfer heat from the component to the fluid in the wellbore. Depending on the wellbore temperature, desiccants are provided that release water at various high regeneration temperatures such as molecular sieve (220–250° C.), potassium carbonate (300° C.), magnesium oxide (800° C.) and calcium oxide (1000° C.). A solid water source is provided using a water-absorbent polymer, such as sodium polyacrylate. Heat transfer is controlled in part by a check valve selected to release water vapor at a selected vapor pressure.
Abstract:
Thermally tunable optical sensors are used in sampling tools for analysis of samples from a wellbore. The thermally tunable optical sensors generate a series passbands of wavelength emissions and detect attenuation in a signal thereof. The attenuation detected is processed and used to determine aspects of the samples. Analysis may be completed remotely (outside of the wellbore), within the wellbore (during drilling or otherwise), or as a part of another process such as fluid management, transport and refinement.
Abstract:
A system and method for acquiring seismic data are disclosed. The system comprises a controller for causing the generation of a seismic signal, where the controller has a first clock used for time-stamping a record of the generated seismic signal. A seismic receiver is deployed in a wellbore so as to detect the generated seismic signal. An atomic clock is disposed in or with the seismic receiver for time-stamping a record of the detected seismic signal. The atomic clock is synchronized with the first clock prior to being placed downhole.
Abstract:
A method and apparatus is described for determining a parameter of interest of a formation fluid. The method comprises moving a tool attached to a tubular member along a borehole in a subterranean formation. The tool is used to determine the refractive index, pressure and temperature of a formation fluid sample, in situ, at a predetermined location along the borehole. A refractive index of a reference fluid is calculated at the sample conditions. The parameter of interest of the formation fluid is determined at the predetermined location from a comparison of the corresponding formation fluid refractive index and the reference fluid refractive index at the predetermined location. In another embodiment, the refractive index of a natural gas sample is determined and compared to the refractive index of pure methane, at downhole conditions, to indicate the dryness of the natural gas.
Abstract:
A formation fluid sample is exposed to a rigidly-supported semi-permeable membrane such as silicone rubber to permit diffusion of gases and vapors from the formation fluid into a vacuum chamber, while at the same time, blocking the passage of any liquids. The membrane-transmitted gas is analyzed in the vacuum chamber by a residual gas analyzer. An ion pump or sorbent is associated with the evacuated chamber to maintain the vacuum. The ion pump or sorbent removes gases and vapors from the chamber that diffuse into the chamber from the reservoir sample that is on the opposite side of the semi-permeable membrane.
Abstract:
The present invention provides method of quantifying sample clean up in real time by providing curve-fitting measurements of optical or physical properties of fluid samples in boreholes. Sample fluid is extracted from the formation surrounding the borehole. As fluid continues to be extracted the composition of the extracted sample changes, altering the values of physical properties of the sample being measured. Measurements are made of optical or physical properties of the sampled fluid, and regression analysis is performed on the acquired measured data points. In one embodiment of the invention, iterative methods enable a user to determine an asymptotic value of a physical property, i.e. absorbance, as well as the percent of the progress that the current sample has obtained toward reaching the asymptotic property value and a projected time to reach the asymptotic property value. If the projected time required to reach that asymptotic value is too long, the operator may decide to abandon extracting fluid from the region. In another embodiment, a more general method enables the user to estimate, through the value of a variable, the speed at which cleanup can occur. The physical properties of the sample may be fit as a function of pumping time or volume.
Abstract:
The invention relates to refractometry and attenuated reflectance spectrometry in a wellbore environment. Specifically, it pertains to a robust apparatus and method for measuring refractive index of fluids along a continuum (rather than in steps), and for measuring attenuated reflectance spectra, and for interpreting the measurements made with this apparatus to determine a variety of formation fluid parameters. The present invention provides a method and apparatus to distinguish between gas and liquid based on the much lower index of refraction of gas. It can also be used to monitor fluid sample clean up over time. The refractive index of a wellbore fluid is determined from the fraction, R, of light reflected off the interface between a transparent window that has a known refractive index and this fluid. Preferably, the refractive index is measured at some wavelength of light for which the fluid is not highly attenuating. However, the adjacent transmission spectrometer can be used to correct the refractive index measurement for attenuation at those wavelengths, which it monitors. Also, this reflection-based refractometer design can be used as an attenuated reflectance spectrometer at highly attenuating wavelengths.
Abstract:
A logging while drilling and wire line system for analyzing the concentration of carbon dioxide or another substance, in a sample down hole in a bore hole. A chamber is filled with a sample that may be fluid, or condensate and gas. The interior chamber volume is selectably expandable for decompression of the sample. The sample may alternately be decompressed by allowing a sample at formation pressure to enter the chamber at a lower pressure, thereby decompressing the sample. A sensor measures the absorbance, transmittance or attenuated total reflectance of the infrared light. Mid and near infrared light is utilized to identify carbon dioxide, water and a plurality of hydrocarbons. A wiper cleans the transmitter and sensor between readings to reduce measurement error caused by fluid sample contamination.
Abstract:
A method for highlighting particular features of an image photographically captured and stored in a computer is disclosed. The method essentially comprises capturing an image of an object using a video or similar electronic camera and storing the image as a series of numbers in the memory of a computer. The computer contains an image capture board and a graphics board so as to acquire and display the image on a monitor. The operator enlarges a region of the image of interest so as to display the individual pixels comprising the image. The operator, through the computer, selects individual pixels from the image to comprise a test set of pixels to be used to discriminate against all of the pixels comprising the image. Once the test set is defined, the eigenvectors and eigenvalues of the test set are calculated to define an ellipsoid encompassing substantially all of the test set data points. In essence, the ellipsoid defines an envelope in color space. The image is scanned using the test set to either accept or reject each of the pixels comprising the image. The accepted or rejected pixels are assigned a value to be used in producing a second display which highlights the desired pixels. The operator may alter the test set by adding more pixels or change the dimensions of the ellipsoid to produce a different display. Certain operations and calculations may be performed on the second image highlighting characteristics of the first image produced of object.