Abstract:
A method and device for delivering pre-excitation pacing to prevent or reduce cardiac remodeling following a myocardial infarction is described. The pre-excitation pacing is modulated in accordance with an intravascular pressure measurement in order to balance the beneficial effects of stress reduction with hemodynamic compromise.
Abstract:
A system comprising a medical device that includes an impedance measurement circuit adapted to be coupled to implantable electrodes to obtain an intracardiac impedance signal between electrodes, a therapy circuit operable to deliver a therapy to a subject, and a controller circuit coupled to the impedance measurement circuit and the therapy circuit. The controller circuit determines a time rate of change of the intracardiac impedance signal and adjusts at least one parameter related to therapy in a manner that alters the rate of change.
Abstract:
A method and device for delivering pre-excitation pacing to prevent or reduce cardiac remodeling following a myocardial infarction is described. The pre-excitation pacing is modulated in accordance with an assessment of cardiac function in order to balance the beneficial effects of stress reduction with hemodynamic compromise.
Abstract:
A method and apparatus for linear stimulation of the heart to resynchronize contraction for improved hemodynamic benefit. Linear stimulation may be accomplished using a linear source, which may comprise an elongated electrode or plurality of electrodes arranged so as to linearly stimulate the heart. A linear source may be coupled to the left ventricle, and one or more additional electrodes may be positioned so as to stimulate a separate region of the left ventricle or one or more additional chambers of the heart as well. Application of an electrical stimulus by the linear source may function to stimulate a larger region of the heart, thereby enhancing the resynchronization effect as well as providing other hemodynamic benefits.
Abstract:
A drug delivery system detects a cardiac condition indicative of a need for increasing a cardiac metabolic level and, in response, releases a drug into tissue or blood to shift a source of metabolically synthesized energy fueling cardiac contraction from fatty acid to glucose. One example of such a system includes an implantable device detecting an ischemia and a transdermal drug delivery device delivering a drug when an ischemic condition is detected. Another example of such a system includes one or more implantable devices detecting a predefined change in cardiac metabolic level and delivering a drug when the change is detected. Such systems are applied to treat, for example, patients suffering ischemia and/or heart failure and patients having suffered myocardial infarction.
Abstract:
A body implantable system employs a lead system having at least one electrode and at least one pressure transducer at a distal end. The lead system is implanted within a patient's heart in a coronary vein of the left ventricle. The lead system includes an occlusion device at a distal end to occlude flow in the coronary vein. The pressure transducer is attached to a catheter that is disposed within an open lumen of the lead system. The pressure transducer senses a coronary vein pressure, the coronary vein pressure being proportional to the left ventricular pressure. The sensed coronary vein pressure gives indications of hemodynamic state of the left ventricle, and measured coronary vein pressure can be used to change a signal sent to the electrode to adaptively pace the patient's heart. The body implantable system can further utilize a right ventricular pressure measurement in concert with the left ventricular pressure measurement to modify pacing therapy parameters.
Abstract:
Methods of cardiac pacing involve sensing left ventricular electrical rhythms, sensing left ventricular blood flow rate, and sensing a coronary vein blood temperature. The methods further involve modifying delivery of synchronized electrical signals to the patient's heart based at least in part on the sensed coronary vein blood temperature and sensed left ventricular flow rate.
Abstract:
Pacing left and right ventricles of the heart for delivery of heart failure therapy involves measuring right ventricular (RV) pressure and a left ventricular (LV) pressure, and computing a parameter developed from one or both of the RV and LV pressure measurements. The parameter is indicative of a degree of left and right ventricular synchronization. At least one parameter of a heart failure pacing therapy is adjusted based on the parameter to improve synchronization of the right and left ventricles.
Abstract:
A method and apparatus for pacing left and right ventricles of the heart involve measuring one or both of a right ventricular (RV) pressure and a left ventricular (LV) pressure, and computing a parameter developed from one or both of the RV and LV pressure measurements. The parameter is indicative of a degree of left and right ventricular synchronization. The parameter is assessed, and an interventricular (V-V) delay is adjusted in response to the parameter assessment. The V-V delay is adjusted to effect a change in the parameter that improves synchronization of the right and left ventricles. The computed parameter is a parameter indicative of hemodyamic state, such as a PP Loop or a pre-ejection period.
Abstract:
Described herein are methods and systems for delivering pacing therapy to HF patients who do not exhibit a reduced EF. Such patients do not have systolic dysfunction and generally do not benefit from established HF therapies that either augment contractile function or counteract conduction abnormalities. In one embodiment, a HF patient with a normal EF is tested for the adequacy of heart rate response during exercise. If the patient is found to be chronotropically incompetent, a rate-adaptive pacing mode is employed in order improve functional capacity.