Abstract:
An optical data system and method are disclosed. The system can be an integrated optical data transmission system that includes an array of lasers that are modulated by a plurality of modulation signals to provide a plurality of sets of optical data signals. Each of the optical data signals in each of the plurality of sets can have a distinct wavelength. The system can also include a wavelength division multiplexing system to combine each of the plurality of sets of optical data signals to generate a plurality of multi-channel optical data signals that are transmitted via a respective plurality of optical transmission media.
Abstract:
A method for constructing an area array waveguide power splitter includes preparing a reflective layer on a substrate and forming a core of an area array waveguide layer and alignment features for an optical fiber input and a plurality of optical fiber outputs atop the reflective layer, wherein the core of the area array waveguide layer and the alignment features are formed concurrently. The method also includes applying a reflective layer to the top and side surfaces of the core of the area array waveguide layer and exposing an input and exposing a plurality of outputs in the reflective layer.
Abstract:
An optoelectronic interface includes an optically transparent substrate; and an alignment layer comprising a pattern of alignment features disposed on said optically transparent substrate.
Abstract:
Waveguide array optical power splitters that provide compact, low-cost implementation of optical power splitting for one and two dimensional optical waveguide arrays are disclosed. The optical power splitters do not introduce mode dependent loss and preserve polarization, enabling the optical power splitters to be used with multimode and single mode light sources. In one aspect, an optical power splitter includes a beamsplitter to receive a plurality of incident beams of light. The beamsplitter splits each incident beam of light into a plurality of output beams of light with each output beam output in a different direction from the beamsplitter. The optical power splitter includes a first set of lenses with each lens to approximately collimate one of the incident beams of light, and includes a second set of lenses with each lens to focus the output beams of light.
Abstract:
A memristive routing device includes a memristive matrix, mobile dopants moving with the memristive matrix in response to programming electrical fields and remaining stable within the memristive matrix in the absence of the programming electrical fields; and at least three electrodes surrounding the memristive matrix. A method for tuning electrical circuits with a memristive device includes measuring a circuit characteristic and applying a programming voltage to the memristive device which causes motion of dopants within the memristive device to alter the circuit characteristic. A method for increasing a switching speed of a memristive device includes drawing dopants from two geometrically separated locations into close proximity to form two conductive regions and then switching the memristive device to a conductive state by applying a programming voltage which rapidly merges the two conductive regions to form a conductive pathway between a source electrode and a drain electrode.
Abstract:
This disclosure is directed to scalable optical interconnect fabrics for distributing optical signals over a computer systems. In one aspect, an optical interconnect fabric includes a star coupler and a plurality of output optical fibers. Each output optical fiber is connected at a first end to the star coupler and is connected at a second end to a node of a plurality of nodes. The fabric also includes the input optical fiber connected at a first end to the star coupler and connected at a second end to a node of the plurality of nodes. The star coupler is to receive at least one optical signal via the input optical fiber, is to split each optical signal into a plurality of optical signals with approximately the same optical power, and is to output each optical signal into one of the output optical fibers.
Abstract:
An optical channel tap assembly comprises a first N by M waveguide array including a first set of optical channels to convey optical signals along a first set of conveyance paths. The optical channel tap assembly also comprises a second N by M waveguide array including a second set of optical channels to convey the optical signals along a second set of conveyance paths, the optical signals received from the first set of conveyance paths. Additionally, the optical channel tap assembly comprises a beam splitter, disposed between the first N by M waveguide array and the second N by M waveguide array, to divert a first portion of power from the optical signals away from the second N by M waveguide array while allowing a second portion of power from the optical signals to propagate into the second N by M waveguide array.
Abstract:
An optical fiber connector is disclosed. The optical fiber connector comprises a form having a curved surface with a first end near the bottom surface of the form. The curved surface is perpendicular to the bottom surface of the form at the first end. A first plurality of active optical fibers are positioned along the curved surface of the form in a side-by side arrangement with the tips of each of the first plurality of optical fibers adjacent to the first end of the curved surface. The ends of each of the first plurality of active optical fibers have been striped down to cladding and the cladding of each optical fiber contacts the cladding of the adjacent optical fibers. An inner cover is attached to the form thereby capturing the first plurality of active optical fibers between the curved surface of the form and an inside curved surface in the inner cover.
Abstract:
A resonant cavity with tunable nanowire. The resonant cavity includes a substrate. The substrate is coupleable to an optical resonator structure. The resonant cavity also includes a plurality of nanowires formed on the substrate. The plurality of nanowires is actuated in response to an application of energy.
Abstract:
A system for passive optical alignment includes an through optical via formed through a substrate, an optical transmission medium secured to a first side of the substrate such that the optical transmission medium is aligned with the through optical via, and an optoelectronic component secured to a second side of the substrate such that the active region of said optoelectronic component is aligned with the through optical via.