Abstract:
Provided is a composition for cancer treatment including phytosphingosine or a derivative thereof, or a pharmaceutically acceptable salt thereof as an active ingredient.
Abstract:
A signal receiving apparatus includes: a tuning unit which has at least one tuner; a communication unit which communicates at least one external device; and a controller which divides an entire channel frequency band to be assigned to the tuning unit and a tunable device, and controls the tuning unit and the communication unit to tune the assigned channel frequency bands if the tunable device is present among the external devices.
Abstract:
A video displayer that facilitates resetting of channel and external input settings includes a tuner configured to select a broadcast signal; an external signal input unit configured to receive an external signal; a signal processing unit configured to process one of the broadcast signal selected and external signal, and to reproduce video images on a display and audio output through a speaker; and a control unit configured to sequentially store setting data for setting environments of said tuner, said external signal input unit, and said signal processing unit according to an externally applied control signal, and to set the setting environment of at least one of said tuner, said external signal input unit, and said signal processing unit with one of previous setting data and subsequent setting data based on any one data set of the setting data in response to a state changing signal applied from an external source.
Abstract:
A liquid crystal display device and a method of fabricating a liquid crystal display device is provided. A liquid crystal display device includes a first substrate; a second substrate; a liquid crystal layer interposed between the first substrate and the second substrate; and a light sensor, formed on the first substrate, to sense a capacitance to output an electrical signal such that the capacitance varies with an intensity of light. A method of fabricating a liquid crystal display includes forming a thin film transistor, a pixel electrode electrically connected with the thin film transistor, and a light sensor on a first substrate; providing a second substrate on which a color filter and a black matrix are formed; and forming a liquid crystal layer between the first substrate and the second substrate.
Abstract:
A thin film transistor array panel is provided, which includes: a plurality of gate lines formed on a substrate and including a plurality of oblique portions and a plurality of gate electrodes; a first insulating layer on the gate line; a semiconductor layer formed on the first insulating layer; a plurality of data lines formed at least on the semiconductor layer and intersecting the gate lines to defined trapezoidal pixel areas; a plurality of drain electrodes separated from the data lines; a second insulating layer formed at least on portions of the semiconductor layer that are not covered with the data lines and the drain electrodes; a plurality of pixel electrodes formed on the second insulating layer and connected to the drain electrodes, at least two of the pixel electrodes disposed in each pixel area; and a plurality of common electrodes formed on the second insulating layer, arranged alternate to the pixel electrodes and connected to the drain electrodes, each common electrode having an edge spaced apart from an edge of the pixel electrodes and substantially parallel to the edge of the pixel electrodes.
Abstract:
A gray scale voltage generator and a method of generating a gray scale voltage in a transmissive and reflective type liquid crystal display device are disclosed. A transmissive mode gray scale data are transformed into real reflective mode gray scale data. An integer part is extracted from the real reflective mode gray scale data as a first reflective mode gray scale data. The first reflective mode gray scale data and temporary reflective mode gray scale data are mixed in a predetermined ratio by N-frame period. The temporary reflective mode gray scale data has a sum of one and the first reflective mode gray scale data. Pseudo gray scale data are inserted into the second reflective mode gray scale data. Therefore, superior display quality is provided in both transmissive and reflective mode.
Abstract:
A method of improving the viewing angle of a vertically-aligned liquid crystal display device is presented. The method involves designing a uniaxial compensation film to provide a retardation value of 200 nm or less for light having a wavelength of about 550 nm. Using this uniaxial compensation film, a display device can be built by obtaining a liquid crystal panel with liquid crystal molecules contained between glass substrates, coupling the uniaxial compensation film to at least one of the glass substrates, and coupling a polarization film and electrodes to the compensation film. Preferably, the uniaxial compensation film has a thickness less than or equal to 50 microns. Where there are multiple compensation films, the total thickness and the total retardation values should be considered.
Abstract:
A thin film transistor array panel is provided, which includes: a plurality of gate lines formed on a substrate and including a plurality of oblique portions and a plurality of gate electrodes; a first insulating layer on the gate line; a semiconductor layer formed on the first insulating layer; a plurality of data lines formed at least on the semiconductor layer and intersecting the gate lines to defined trapezoidal pixel areas; a plurality of drain electrodes separated from the data lines; a second insulating layer formed at least on portions of the semiconductor layer that are not covered with the data lines and the drain electrodes; a plurality of pixel electrodes formed on the second insulating layer and connected to the drain electrodes, at least two of the pixel electrodes disposed in each pixel area; and a plurality of common electrodes formed on the second insulating layer, arranged alternate to the pixel electrodes and connected to the drain electrodes, each common electrode having an edge spaced apart from an edge of the pixel electrodes and substantially parallel to the edge of the pixel electrodes.
Abstract:
A thin film transistor array panel is provided, which includes: a plurality of gate lines formed on a substrate and including a plurality of oblique portions and a plurality of gate electrodes; a first insulating layer on the gate line; a semiconductor layer formed on the first insulating layer; a plurality of data lines formed at least on the semiconductor layer and intersecting the gate lines to defined trapezoidal pixel areas; a plurality of drain electrodes separated from the data lines; a second insulating layer formed at least on portions of the semiconductor layer that are not covered with the data lines and the drain electrodes; a plurality of pixel electrodes formed on the second insulating layer and connected to the drain electrodes, at least two of the pixel electrodes disposed in each pixel area; and a plurality of common electrodes formed on the second insulating layer, arranged alternate to the pixel electrodes and connected to the drain electrodes, each common electrode having an edge spaced apart from an edge of the pixel electrodes and substantially parallel to the edge of the pixel electrodes.
Abstract:
The present invention uses the principles of electrochemical ion absorption (charging) and ion desorption (discharge), and relates to a continuous flow-electrode system, a high-capacity energy storage system, and a water treatment method using the same, in which high-capacity electric energy is stored as electrode materials of a slurry phase and electrolytes simultaneously flow in a successive manner within a fine flow channel structure formed on an electrode. More specifically, the present invention relates to a continuous flow-electrode system, an energy storage system, and a water treatment method, wherein electrode active materials consecutively flow in a slurry state whereby a high capacity is easily obtained without enlarging or stacking electrodes.