Abstract:
Disclosed are compositions comprising variants of alpha-amylase that have alpha-amylase activity and which exhibit altered properties relative to a parent AmyS-like alpha-amylase from which they are derived. The compositions comprise an additional enzyme such as a phytase. Also disclosed are methods of using the compositions, and kits related thereto.
Abstract:
An arrangement and a method for temperature compensation for a resistance (1). A resistance (1) with a controllable resistance value is compared with a reference resistance (2) which is in the form of a switched capacitor. A comparator (3) compares the two resistance values with one another. The comparator (3) takes an error signal as a basis for actuating the controllable resistance (1). This produces a thermally stable resistance. The principle can preferably be applied in transimpedance amplifiers.
Abstract:
In a radio access network, techniques for determining how often an aces terminal in communication with the network is to monitor a channel of the network based on trigger information received from the access terminal that is specific to one or more of the following: a state of the terminal, a state of a premium application, and a user of the terminal. The trigger information includes information about one or more of the following: a power mode of the access terminal, a user profile identification, an activation of a premium application on the terminal, and a terminal of a premium application on the terminal.
Abstract:
A circuit is described for detecting a difference in phase and frequency between two incoming signals. Digital output signals are produced whose widths vary according to a degree of phase lead or phase lag of one signal with respect to the other. First sub-circuits are connected, one to each of the input signals to produce an output pulse of short duration, compared with a period of the incoming signal, at rising transitions of the associated input signal. Two resettable pulse detection circuits each have an output set to a first stable state when an active signal is received on a reset input and which change to a second stable state when a short duration pulse is received from one of the subcircuits on a pulse input. Further circuitry is connected such that when both outputs of the resettable pulse detection circuits are in the second stable state, an active reset signal is supplied to both resettable pulse detection circuits, to return both of their outputs to the first stable state. The outputs of the resettable pulse detection circuits provide the outputs of the circuit.
Abstract:
A relay communication system is described in which a relay node communicates with a base station using a sequence of frames, each frame comprising a plurality of sub-frames. The relay node has an energy saving mode in which it monitors for communications from said base station in at least one pre-determined sub-frame of each frame and does not monitor for communication from said base station in at least one other sub-frame of that frame.
Abstract:
Large scale system operation may be provided. Upon receiving an action request from a user, a determination may be made as to whether the user requires elevated permissions to perform the action request. In response to determining that the user requires elevated permissions to perform the action request, the action request may be forwarded to a lockbox for evaluation and a permission response may be received from the lockbox.
Abstract:
A first base station for use in a communications network, the first base station having a first cell operating range, comprising: means for obtaining data relating to at least one characteristic of a signal transmitted by a second base station having a second cell operating range which is different from and overlaps with the first cell operating range of the first base station; means for determining a cell selection bias value for the first or second base station using the obtained data; and means for transmitting the determined cell selection bias value to a user device within the first cell operating range of the first base station.
Abstract:
A method is provided for making a solar cell. The method includes providing a stack including a substrate, a barrier layer disposed on the substrate, and an anti-reflective layer disposed on the barrier layer, where the anti-reflective layer has charge centers. The method also includes generating a corona with a charging tool and contacting the anti-reflective layer with the corona thereby injecting charge into at least some of the charge centers in the anti-reflective layer. Ultra-violet illumination and temperature-based annealing may be used to modify the charge of the anti-reflective layer.
Abstract:
A communication system is presented in which a base station operates a each of a plurality of cells using a respective component carrier. When the base station decides to configure a mobile telephone to use additional cells of the plurality of cells, a access control procedure is initiated to determine for each cell whether the configuration should be allowed.
Abstract:
A method performed by a mobile communications node at a setup or a reconfiguration of a radio link control unacknowledged mode (RLC-UM) radio bearer includes receiving a radio bearer setup message from a network communications node, the radio bearer setup message being applied in configuring an RLC-UM radio bearer within the mobile communications node to be able to communicate data with the network communications node, in response to receiving the radio bearer setup message, calculating new cipher data for determining values of a cipher input parameter used for ciphering and deciphering data communicated with the network communications node, and transmitting to the network communications node a radio bearer setup complete message confirming that the RLC-UM radio bearer has been setup and sending the new cipher data to the network communications node.