Abstract:
A pattern inspection apparatus which compares images of regions, corresponding to each other, of patterns that are formed so as to be identical and judges that non-coincident portions in the images are defects. The pattern inspection apparatus is equipped with an image comparing section which plots individual pixels of an inspection subject image in a feature space and detects excessively deviated points in the feature space as defects. Defects can be detected correctly even when the same patterns in images have a brightness difference due to a difference in the thickness of a film formed on a wafer.
Abstract:
A defect inspection apparatus includes an irradiation optical system 20, a detection optical system 30, and an image processor 40. In the irradiation optical system, a mirror 2603 is disposed to reflect downward a beam flux that has been guided to a first or second optical path, and a cylindrical lens 251 and an inclined mirror 2604 are disposed to focus the beam flux that has been directed downward by the mirror, at an inclination angle from a required oblique direction extending horizontally, onto a substrate 1 to be inspected, as a slit-shaped beam 90.
Abstract:
When using a CCD sensor as a photo-detector in a device for inspecting foreign matters and defects, it has a problem of causing electric noise while converting the signal charge, produced inside by photoelectric conversion, into voltage and reading it. Therefore, the weak detected signal obtained by detecting reflected and scattered light from small foreign matters and defects is buried in the electric noise, which has been an obstacle in detecting small foreign matters and defects. In order to solve the above problem, according to the present invention, an electron multiplying CCD sensor is used as a photo-detector. The electron multiplying CCD sensor is capable of enlarging signals brought about by inputted light relatively to the electric noise by multiplying the electrons produced through photoelectric conversion and reading them. Accordingly, compared to a conventional CCD sensor, it can detect weaker light and, therefore, smaller foreign matters and defects.
Abstract:
A defect inspection method includes: illuminating an area on surface of a specimen as a test object under a specified illumination condition; scanning a specimen to translate and rotate the specimen; detecting scattering lights to separate each of scattering lights scattered in different directions from the illuminated area on the specimen into pixels to be detected according to a scan direction at the scanning a specimen and a direction approximately orthogonal to the scan direction; and processing to perform an addition process on each of scattering lights that are detected at the step and scatter approximately in the same direction from approximately the same area of the specimen, determine presence or absence of a defect based on scattering light treated by the addition process, and compute a size of the determined defect using at least one of the scattering lights corresponding to the determined defect.
Abstract:
A defect inspection method and device for irradiating a linear region on a surface-patterned sample mounted on a planarly movable table, with illumination light from an inclined direction relative to a direction of a line normal to the sample, next detecting in each of a plurality of directions an image of the light scattered from the sample irradiated with the illumination light, then processing signals obtained by the detection of the images of the scattered light, and thereby detecting a defect present on the sample; wherein the step of detecting the scattered light image in the plural directions is performed through elliptical lenses in which elevation angles of the optical axes thereof are different from each other, within one plane perpendicular to a plane formed by the normal to the surface of the table on which to mount the sample and the longitudinal direction of the linear region irradiated with the irradiation light, the elliptical lenses being formed of circular lenses having left and right portions thereof cut.
Abstract:
A defect inspection method wherein illumination light having a substantially uniform illumination intensity distribution in a certain direction on the surface of a specimen is radiated onto the surface of the specimen; wherein multiple components of those scattered light beams from the surface of the specimen which are emitted mutually different directions are detected, thereby obtaining corresponding multiple scattered light beam detection signals; wherein the multiple scattered light beam detection signals is subjected to processing, thereby determining the presence of defects; wherein the corresponding multiple scattered light detecting signals is processed with respect to all of the spots determined to be defective by the processing, thereby determining the sizes of defects; and wherein the defect locations on the specimen and the defect sizes are displayed with respect to all of the spots determined to be defective by the processing.
Abstract:
Proposed is a defect inspection method whereby: illuminating light having a substantially uniform illumination intensity distribution in one direction of a sample surface irradiated on the sample surface; multiple scattered light components, which are output in multiple independent directions, are detected among the scattered light from the sample surface and multiple corresponding scattered light detection signals are obtained; at least one of the multiple scattered light detection signals is processed and the presence of defects is determined; at least one of the multiple scattered light detection signals that correspond to each of the points determined by the processing as a defect is processed and the dimensions of the defect are determined; and the position and dimensions of the defect on the sample surface, at each of the points determined as a defect, are displayed.
Abstract:
Disclosed is a defect inspection method which makes it possible to scan the entire surface of a sample and detect minute defects without causing thermal damage to the sample. A defect inspection method in which a pulse laser emitted from a light source is subjected to pulse division and irradiated on the surface of a sample which moves in one direction while the divided-pulse pulse laser is rotated, reflection light from the sample irradiated by the divided-pulse pulse laser is detected, the signal of the detected reflection light is processed to detect defects on the sample, and information regarding a detected defect is output to a display screen, wherein the barycentric position of the light intensity of the divided-pulse pulse laser is monitored and adjusted.
Abstract:
A method and apparatus for detecting defects are provided for detecting defects or foreign matter on an object to be inspected. The apparatus includes a movable stage for mounting a specimen, an illumination system for irradiating a circuit pattern with light from an inclined direction, and an image-forming optical system for forming an image of an irradiated detection area on a detector from the upward and oblique directions. With this arrangement, diffracted light and scattered light caused on the circuit pattern through the illumination by the illumination system is collected. A spatial filter is provided on a Fourier transform surface for blocking the diffracted light from a linear part of the circuit pattern. The scattered and reflected light received by the detector is converted into an electrical signal. The converted electrical signal of one chip is compared with that of the other adjacent chip.
Abstract:
An inspecting method and apparatus for inspecting a substrate surface includes application of a light to the substrate surface, detection of scattered light or reflected light from the substrate surface due to the applied light at a plurality of positions to obtain a plurality of electrical signals, extraction of a signal in a mutually different frequency band from each of the plurality of electrical signals, and calculation of a value regarding a state of film of the substrate through an arithmetical operation process of a plurality of extracted signals in the frequency bands.