Abstract:
A measurement system includes a system for causing relative motion between a sample and an irradiation spot. The sample includes fluorescent markers having respective wavelengths. A gating system provides a gating signal based at least in part on resultant light substantially at an irradiation wavelength. A detection system detects fluorescent light from the irradiated markers and provides detection signals representing the fluorescent light detected concurrently with a gate-open signal. In some examples, the detection system detects fluorescent light at multiple wavelengths and provides respective detection signals. A spectral discriminator arranged optically between the sample and the detection system receives the fluorescent light from the sample and provides respective fluorescent light at the wavelengths to the detection system. A flow cytometer can spectrally disperse resultant fluorescent light and measure the wavelengths separately. Light from a sample disposed over a reflective phase grating can be dispersed, measured, and gated.
Abstract:
Devices and methods for recording dynamics of cellular and/or biochemical processes, including a device including one or more dispersive elements configured to receive a pulsed laser beam with a spectrum of different wavelengths and disperse the spectrum of the pulsed laser beam; and one or more first elements configured to receive the dispersed spectrum of the pulsed laser beam, and generate a multiphoton excitation area in a biological sample by re-overlapping in time and space the dispersed spectrum of the pulsed laser beam on an area in the biological sample, wherein the device is configured to record at high speed changes of cellular and biochemical processes of a population of cells of the biological sample based on generation of the multiphoton excitation area in the biological sample.
Abstract:
An object inspection apparatus includes a terahertz wave supplying unit for generating a terahertz wave and moving a path of the terahertz wave according to time so that the terahertz wave is supplied to an object to be inspected, a focusing lens located between the terahertz wave supplying unit and the object to be inspected to focus the terahertz wave supplied by the terahertz wave supplying unit, a rotating plate having a plate shape and including a plurality of the focusing lenses with different distances from the center thereof, the rotating plate rotating in the circumferential direction so that one of the focusing lenses is located at a path of the terahertz wave according to the path movement of the terahertz wave, and a terahertz wave detecting unit for collecting and detecting a terahertz wave incident to the object to be inspected.
Abstract:
Detection of a rarely occurring event within one or more biological samples includes (a) processing each biological sample to provide a gellable liquid solution comprising concentrated biological sample and a flourochrome designed to associate with a rarely occurring event within the concentrated biological sample; (b) depositing the solution in a layer on a surface of a slide; and (c) scanning the solution on the slide with energy adapted to cause fluorescence of the flourochrome to detect potential instances of the rarely occurring event within the concentrated biological sample in the solution.
Abstract:
This apparatus permits the non-destructive examination of entire surfaces for defects and contamination, and can detect microscopically small dot-shaped and linear defects and extremely fine macroscopic non-homogeneous areas. For this purpose, an astigmatic lens system (5) is placed in the optical path between light source (2) and objective (9) which produces a cigar-shaped intermediate image (31), in which the feed offset in scanning the surface (10) depends on the intermediate image (31) and is equal to the length of the intermediate image (31) projected upon this surface (10). A dark-field stop assembly (18) with an adjustable dark-field deflection system (8) is placed in the optical path between the lens system (5) and the objective (9), which projects the light beam (1) after deflection exactly centered at right angles through the objective (9) upon the surface of the object (10). The light reflected by the surface (10) and collected by the objective (9) is projected to a photo detector. An electronic analysis system (21) breaks down the amplified output signals from the photo detector (19) into measured values due to dot-shaped, linear, and planiform defects. The electronic analysis system (21) is connected via a computer unit (22) to peripheral equipment (23, 24, 25) which permits the representation of all the measured values obtained in a measuring cycle.
Abstract:
A device for illuminating components of transparent material by dot-scanning so that the components may be tested for surface irregularities and occlusions which comprises a component rotatably mounted so that the component may be rotated on its axis at a predetermined speed, a light source for generating a parallel light beam for illuminating the component, and a mechanism for periodically linearly deflecting the light beam at a frequency greater than the predetermined rotational speed of the component. The periodically linearly deflecting mechanism is disposed in the path of the light beam between the parallel light beam generating source and the component. The device also includes a focusing lens for focusing the light beam in a testing plane, where the focusing lens is disposed between the periodically linearly deflecting mechanism and the component at a location whereby the focal point of the focusing lens is at the edge of the periodically linearly deflecting mechanism. The device further includes an adjustable tilting mirror disposed between the focusing lens and the component for deflecting the light beam onto the component, whereby the dot-scanning light beam can then be detected by a testing device.
Abstract:
A specific small area of a crystal sample is scanned by a laser beam which rotates about an axis substantially perpendicular to the sample surface such that the intersection of the beam with a plane above and parallel to the surface describes a true spiral or a stepwise spiral pattern. The laser beam is reflected different amounts for different beam positions to produce a reflectance pattern indicative of crystallographic orientation.
Abstract:
An inspection system and method for serial high-speed image data transfer is provided herein. According to one embodiment, the method may include receiving multiple channels of image data at an input data rate and buffering the image data at the input data rate until the buffered data reaches a predetermined size. Once the predetermined size has been reached, the method may include packing the buffered data, encoding the data packet, serializing the encoded data packet and converting the encoded data packet into an optical signal. In some cases, the image data may be packed along with a data header containing information about the system. Once converted, each optical signal (i.e., representing one data packet) may be transmitted serially over one or more fibre channels to a processing node of the inspection system. In most cases, the data is packed, encoded, serialized and transmitted to the processing node at a data rate much higher than the input data rate. The processing node analyzes the optical signal to detect defects on a specimen under inspection.
Abstract:
A laser scattering defect inspection system includes: a stage unit that rotates a workpiece W and transports the workpiece W in one direction; a laser light source that emits a laser beam LB toward the workpiece W mounted on the stage unit; an optical deflector that scans the laser beam LB emitted from the laser light source on the workpiece W; an optical detector that detects the laser beam LB scattered from the surface of the workpiece W; a storage unit that stores defect inspection conditions for each inspection step of a manufacturing process of the workpiece W, where the conditions include the rotation speed and the moving speed of the workpiece W by the stage unit, the scan width on the workpiece W and the scan frequency by the optical deflector; and a control unit that reads the defect inspection conditions stored for each inspection step in the storage unit and controls the driving of the stage unit and the optical deflector under the conditions.
Abstract:
A cylindrical mirror or lens is used to focus an input collimated beam of light onto a line on the surface to be inspected, where the line is substantially in the plane of incidence of the focused beam. An image of the beam is projected onto an array of charge-coupled devices parallel to the line for detecting anomalies and/or features of the surface, where the array is outside the plane of incidence of the focused beam. For inspecting surface with a pattern thereon, the light from the surface is first passed through a spatial filter before it is imaged onto the charge-coupled devices. The spatial filter includes stripes of scattering regions that shift in synchronism with relative motion between the beam and the surface to block Fourier components from the pattern. The spatial filter may be replaced by reflective strips that selectively reflects scattered radiation to the detector, where the reflective strips also shifts in synchronism with the relative motion.