Abstract:
An example telecommunications cabinet includes: an enclosure including sidewalls extending between a bottom of the enclosure and a top of the enclosure to define an interior of the enclosure; telecommunications equipment disposed within the interior of the enclosure; and a data distribution arrangement disposed on one of the sidewalls within the interior of the enclosure.
Abstract:
Systems and methods for connectors with insertion counters are provided. In one embodiment, a connector comprises: an interface configured to interface with a corresponding interface of a port to communicate signals between the port and a cable attached to the connector; at least one switch configured to change from a first state to a second state when the connector is inserted into the port; and a microcontroller configured to record insertion events, wherein the microcontroller increments an insertion count stored within the microcontroller when the at least one switch transitions from the first state to the second state.
Abstract:
An exemplary optical distribution frame includes a frame structure defining multiple positions into which multiple chassis can be inserted and a frame controller unit attached to the frame structure. The frame structure includes a frame controller and a switch communicatively coupled to the frame controller, wherein the switch includes a multiple ports. The frame structure including multiple cables, each cable being attached to a respective one of the ports of the switch and routed and attached to the optical distribution frame so that each cable can be attached to a chassis inserted into a predetermined one of the positions in the optical distribution frame, wherein the frame controller is configured to communicate port mapping information to a management entity that is communicatively coupled to the frame controller for use by the management entity in associating location information with a chassis inserted into the optical distribution frame.
Abstract:
A fiber panel system includes a chassis and at least blades configured to mount to the chassis. Each blade is moveable relative to the chassis between a retracted (closed) position and at least one extended position. Cable slack is managed at the front and/or rear of each chassis to facilitate movement of the blades without pulling or bending the cables beyond a maximum bend limit. Each blade may be locked into one or more positions relative to the chassis.
Abstract:
A fiber panel system includes a chassis and at least a first blade configured to moveably mount to the chassis. Each blade includes a base, a frame, and front couplers. The base of each blade defines at least one opening at a location spaced rearwardly from the front couplers. The front couplers may be smart or passive.
Abstract:
Fiber optic connectors and adapters may be automatically secured and released via a management system. Such automation may inhibit accidental and/or unauthorized insertion of fiber optic connectors into adapter ports. The automation also may inhibit accidental and/or unauthorized removal of the fiber optic connectors from the adapter ports.
Abstract:
A faceplate assembly includes a faceplate member; at least one jack module mounted in an opening of the faceplate member; and a printed circuit board assembly. The printed circuit board assembly includes a printed circuit board; a first set of secondary contacts that are electrically connected to the printed circuit board; and a network connector that is electrically connected to the secondary contacts of the first set via the printed circuit board. The secondary contacts extend into the jack module. The secondary contacts are isolated from primary contacts of the jack module.
Abstract:
Fiber optic connectors and adapters may be automatically secured and released via a management system. Such automation may inhibit accidental and/or unauthorized insertion of fiber optic connectors into adapter ports. The automation also may inhibit accidental and/or unauthorized removal of the fiber optic connectors from the adapter ports.
Abstract:
A communications connection system includes an adapter module defining at least first and second ports and at least one media reading interface mounted at one of the ports. The first adapter module is configured to receive a fiber optic connector at each port. Some type of connectors may be formed as duplex connector arrangements. Some types of adapters may include ports without media reading interfaces. Some types of media reading interfaces include contact members having three contact sections.
Abstract:
A circuit protection system for a power panel is disclosed. The circuit protection system includes a transistor connected in a channel of a power panel, the transistor connected between return connections of a load and a return path, and the power panel including a plurality of channels connected to the load. The circuit protection system also includes control circuitry electrically connected in parallel with the transistor, the control circuitry configured to selectively activate the transistor to allow current to pass through the transistor based on an observed voltage across the transistor.