Abstract:
An electronic device may be provided with a display mounted in a housing. An ambient light sensor may measure the color of ambient light through an ambient light sensor window in the display. The ambient light sensor may have an array of light detectors on a semiconductor die. The light detectors may include color matching function light detectors that have spectral sensitivity profiles that match standard observer color matching functions and may include spectral sensing light detectors. The spectral sensing light detectors may have narrower full width at half maximum bandwidths than the color matching function light detectors and may be used with the color matching function light detectors to measure an ambient light spectrum. The color matching function light detectors may be used to measure the color of ambient light.
Abstract:
An electronic device may include a display and control circuitry that operates the display. The control circuitry may be configured to daltonize input images to produce daltonized output images that allow a user with color vision deficiency to see a range of detail that the user would otherwise miss. The daltonization algorithm may be specific to the type and severity of color vision deficiency that the user has. The control circuitry may conduct a color vision assessment using the display. The color vision assessment may include a sequence of test images that are each displayed for a predetermined period of time before moving to the next test image in the sequence. Each test image may include a color patch on a neutral background. A predetermined number of severity levels for each type of color vision deficiency may be tested during the color vision assessment.
Abstract:
An electronic device may include a display having an array of display pixels and having display control circuitry that controls the operation of the display. The display control circuitry may adaptively adjust the display output based on ambient lighting conditions. For example, in cooler ambient lighting conditions such as those dominated by daylight, the display may display neutral colors using a relatively cool white. When the display is operated in warmer ambient lighting conditions such as those dominated by indoor light sources, the display may display neutral colors using a relatively warm white. Adapting to the ambient lighting conditions may ensure that the user does not perceive color shifts on the display as the user's vision chromatically adapts to different ambient lighting conditions. Adaptively adjusting images in this way can also have beneficial effects on the human circadian rhythm by displaying warmer colors in the evening.
Abstract:
This disclosure relates to image capture devices with the ability to perform adaptive white balance correction using a switchable white reference (SWR). In some embodiments, the image capture device utilizes “true white” information to record images that better represent users' perceptions. In other embodiments, the same SWR and camera that dynamically sample ambient lighting conditions are used to determine “true white” in near real-time. In other embodiments, the image capture device comprises a display screen that utilizes the “true white” information in near real-time to dynamically adjust the display. In other embodiments, face detection techniques and/or ambient light sensors may be used to determine which device camera is most closely-aligned with the direction that the user of the device is currently looking in, and using it to capture a “true white” image in the direction that most closely corresponds to the ambient lighting conditions that currently dominate the user's perception.
Abstract:
An electronic device may include a display having an array of display pixels. The display pixels may include red, green, blue, and white subpixels. Pixel mapping circuitry may convert red-green-blue pixel values in a frame of display data to red-green-blue-white pixel values using a brightness adjustment factor. The brightness adjustment factor may be determined based on ambient lighting conditions. The brightness adjustment factor be determined such that any color distortion resulting from applying the brightness adjustment factor is maintained under a just-noticeable-difference (JND) threshold. White subpixel values may be determined based on the brightness adjustment factor. Pixel rendering circuitry may be used to render red-green-blue-white pixel values onto the physical pixel structure. When a display pixel does not include a subpixel of a particular color, the pixel rendering circuitry may compensate for the missing color using nearby subpixels.
Abstract:
An electronic device may include a display having an array of display pixels and having display control circuitry that controls the operation of the display. The display control circuitry may adaptively adjust the spectral characteristics of display light emitted from the display to achieve a desired effect on the human circadian system. For example, the display control circuitry may adjust the spectral characteristics of blue light emitted from the display based on the time of day such that a user's exposure to the display light may result in a circadian response similar to that which would be experienced in natural light. The spectral characteristics of blue light emitted from the display may be adjusted by adjusting the relative maximum power levels provided to blue pixels in the display or by shifting the peak wavelength associated with blue light emitted from the display.
Abstract:
A display may have a first stage such as a color liquid crystal display stage and a second stage such as a monochromatic liquid crystal display stage that are coupled in tandem so that light from a backlight passes through both stages. The dynamic range of the display may be enhanced by using the second stage to perform local dimming operations. The pixel pitch of the second stage may be greater than the pixel pitch of the first stage to ease alignment tolerances and reduce image processing complexity. The color stage and monochromatic stages may share a polarizer. A color filter in the color stage may have an array of red, green, and blue elements or an array of white, red, green, and blue elements. The color stage may be a fringe field display and the monochrome stage may be an in-plane switching display or a twisted nematic stage.
Abstract:
An electronic device that includes a display and an eye tracker configured to collect eye tracking data regarding a gaze of one or more of a user's eyes across the display is disclosed herein. The electronic device includes processing circuitry that is operatively coupled to the display and configured to foveate one or more areas of the display according to the eye tracking data. If the eye tracking data input is lost, the processing circuitry is configured to recover from the loss of eye tracking data by changing one or more aspects of the foveated areas (e.g., size, resolution, etc.) until a threshold is satisfied. As time elapses since loss of eye tracking, the foveated areas move toward a center or a salient region of the display.
Abstract:
In some implementations, a mobile computing device may participate in the calibration of an output signal of a media device. This calibration process includes storing device-specific calibration data which is related to properties of a light sensor of the mobile device. The mobile device then detects of properties of light emitted by the display device during a presentation to obtain sensor values related to light emitted by the display device during the presentation. The calibration process may also ensure that the mobile device is proximate to the display device prior to obtaining the sensor values. The collected sensor values are adjusted using device-specific calibration data stored to the mobile device to normalize the sensor values relative to a baseline. These normalized sensor values are sent to the media device for use in adjusting the output signal based on the normalized sensor values.
Abstract:
A display may have display layers that form an array of pixels. An angle-of-view adjustment layer may overlap the display layers. The angle-of-view adjustment layer may include an array of adjustable louvers that move from a first position in which the angle of view of the display is restricted for a private viewing mode and a second position in which the angle of view of the display is not restricted for a normal viewing mode. The louvers may contain electrophoretic particles. The louvers may be tapered and may have a width at one end that is less than ten microns. The electrophoretic particles may form isolated clusters on a lower substrate in normal viewing mode to increase the transmittance of the display in normal viewing mode. The angle-of-view adjustment layer may be a second liquid crystal display layer that is used to block off-axis light.