Abstract:
Communication signals using a first and a second frequency band in a wireless network is described herein. The first frequency band may be associated with a first beamwidth while the second frequency band may be associated with a second beamwidth. An apparatus may include receiver circuitry arranged to receive first signals in a first frequency band associated with a first beamwidth and second signals in a second frequency band associated with a second beamwidth, the first signals comprising a frame synchronization parameter and the second signals comprising frame alignment signals. The apparatus may further include processor circuitry coupled to the receiver circuitry, the processor circuitry arranged to activate or deactivate the receiver circuitry to receive the frame alignment signals based on the frame synchronization parameter. Other embodiments may be described and/or claimed.
Abstract:
Briefly, in accordance with one or more embodiments, two or more cells are configured to perform coordinated multipoint (CoMP) transmission for one or more user equipment devices with a common media access control (MAC) or a common radio resource control (RRC). Measurement information is received from the one or more user equipment devices. One or more of the cells may be deactivated, or one or more additional cells may be activated for coordinated multipoint transmission based at least in part on the measurement information.
Abstract:
Embodiments of methods and apparatus for determining and/or quantizing a beamforming matrix are disclosed. In some embodiments, the determining and/or quantizing of the beamforming matrix may include the use of a base codebook and a differential codebook. Additional variants and embodiments are also disclosed.
Abstract:
A method and apparatus for identifying the preamble for an unknown signal received in Orthogonal Frequency Division Multiplexing (OFDM) communications. In one embodiment, the preamble is identified from a set of known preambles using a detection statistic based on a generalized likelihood ratio (GLR) method. In another embodiment, the GLR detection statistic relies on a priori assumptions about a transfer function represented by the received signal.
Abstract:
A reconfigurable multichannel receiver may selectively operate in increased throughput modes and/or increased range modes. In some embodiments, the receiver may select two or more antennas from a plurality of spatially diverse antennas to receive more than one subchannel of a wideband orthogonal frequency division multiplexed (OFDM) channel. Maximum-ratio combining may be performed on corresponding symbol-modulated subcarriers from the two or more antennas, and a single OFDM symbol may be generated from contributions from the subchannels received by the two or more antennas. In other embodiments, more than one subchannel of a wideband OFDM channel may be received through a single antenna selected from a plurality of spatially diverse antennas. In other embodiments, a single subchannel may be received by a plurality of spatially diverse antennas and maximum-ratio combining may be performed on corresponding symbol-modulated subcarriers received by the antennas.
Abstract:
An apparatus for a base station configured for operation in a C-RAN includes processing circuitry coupled to a memory. To configure the base station for multi-user multiple input multiple output (MU-MIMO) signal processing, the processing circuitry is to decode a plurality of sounding reference signals received from a corresponding plurality of UEs via a corresponding plurality of channels. The plurality of channels are estimated based on the plurality of sounding reference signals. A beamforming matrix is determined based on a channel matrix corresponding to the plurality of channels. Beamforming is performed on a plurality of uplink (UL) data streams received from the plurality of UEs, to generate a plurality of beamformed streams. The beamforming is based on the beamforming matrix. Interference suppression is performed on the plurality of beamformed streams to generate a plurality of output data streams. The interference suppression is based on non-orthogonal DMRSs received from the UEs.
Abstract:
An apparatus for use in a UE includes processing circuitry coupled to a memory. To configure the UE for 5G-NR communications, the processing circuitry is to decode higher layer signaling received from a base station, the higher layer signaling to configure a plurality of BWPs for UL and DL communication with the base station. A received DCI includes a field triggering SRS reporting. The field also indicates a subset of the plurality of BWPs for the SRS reporting. SRS is encoded for transmission to the base station using a first BWP of the subset of the plurality of BWPs indicated by the field to perform the SRS reporting. An UL communication comprising a PUSCH is encoded for transmission using a second BWP of the plurality of BWPs, the second BWP being non-overlapping with the subset of the plurality of BWPs.
Abstract:
Systems, apparatuses, methods, and computer-readable media are provided for selecting a TCI-State for receiving downlink transmissions. In one example a processor/UE is configured to determine one or more candidate TCIs for a downlink slot; determine a scheduling offset between a physical downlink shared channel (PDSCH) and a physical downlink control channel (PDCCH); prioritize the candidate TCIs based on the scheduling offset; identify a highest priority candidate TCI; and select the highest priority candidate TCI for receiving the PDSCH.
Abstract:
Embodiments of a User Equipment (UE), Next Generation Node-B (gNB) and methods of communication are generally described herein. The UE may receive an information element (IE) that includes: a higher layer parameter that indicates a plurality of modulation and coding scheme (MCS) thresholds; and another higher layer parameter that includes a plurality of resource block (RB) thresholds. The UE may determine a time density of phase tracking reference signal (PT-RS) to be transmitted by the UE based at least partly on a comparison between a MCS and the plurality of MCS thresholds. The UE may determine a frequency density of the PT-RS based at least partly on a comparison between a scheduled bandwidth and the plurality of RB thresholds. The UE may encode the PT-RS for transmission in accordance with the determined time density and the determined frequency density.
Abstract:
Described is an apparatus of a User Equipment (UE) operable to communicate with a fifth-generation Evolved Node-B (gNB) on a wireless network. The apparatus may comprise a first circuitry, a second circuitry, and a third circuitry. The first circuitry may be operable to detect a beam failure event. The second circuitry may be operable to generate a beam failure recovery request for transmission to the gNB, in response to the beam failure event. The third circuitry may be operable to monitor for Physical Downlink Control Channel (PDCCH) in a search space configured by the gNB, subsequent to a transmission of the beam failure recovery request.