摘要:
A method for fabricating a porous semiconductor body region, comprising:producing at least one trench in a semiconductor body, starting from a surface of the semiconductor body, then producing at least one porous semiconductor body region in the semiconductor body starting from the at least one trench at least along a portion of the side walls of the trench, and then filling the trench with a semiconductor material (15) of the semiconductor body.
摘要:
A method for protecting a semiconductor device against degradation of its electrical characteristics is provided. The method includes providing a semiconductor device having a first semiconductor region and a charged dielectric layer which form a dielectric-semiconductor interface. The majority charge carriers of the first semiconductor region are of a first charge type. The charged dielectric layer includes fixed charges of the first charge type. The charge carrier density per area of the fixed charges is configured such that the charged dielectric layer is shielded against entrapment of hot majority charge carriers generated in the first semiconductor region. Further, a semiconductor device which is protected against hot charge carriers and a method for forming a semiconductor device are provided.
摘要:
A semiconductor device with a dynamic gate drain capacitance. One embodiment provides a semiconductor device. The device includes a semiconductor substrate, a field effect transistor structure including a source region, a first body region, a drain region, a gate electrode structure and a gate insulating layer. The gate insulating layer is arranged between the gate electrode structure and the body region. The gate electrode structure and the drain region partially form a capacitor structure including a gate-drain capacitance configured to dynamically change with varying reverse voltages applied between the source and drain regions. The gate-drain capacitance includes at least one local maximum at a given threshold or a plateau-like course at given reverse voltage.
摘要:
Disclosed is a method for controlling the recombination rate in the base region of a bipolar semiconductor component, and a bipolar semiconductor component.
摘要:
A semiconductor device with a dynamic gate drain capacitance. One embodiment provides a semiconductor device. The device includes a semiconductor substrate, a field effect transistor structure including a source region, a first body region, a drain region, a gate electrode structure and a gate insulating layer. The gate insulating layer is arranged between the gate electrode structure and the body region. The gate electrode structure and the drain region partially form a capacitor structure including a gate-drain capacitance configured to dynamically change with varying reverse voltages applied between the source and drain regions. The gate-drain capacitance includes at least one local maximum at a given threshold or a plateau-like course at given reverse voltage.
摘要:
A semiconductor component includes a semiconductor body and a second semiconductor zone of a first conductivity type that serves as a rear side emitter. The second semiconductor zone is preceded by a plurality of third semiconductor zones of a second conductivity type that is opposite to the first conductivity type. The third semiconductor zones are spaced apart from one another in a lateral direction. In addition, provided within the semiconductor body is a field stop zone spaced apart from the second semiconductor zone, thereby reducing an electric field in the direction toward the second semiconductor zone.
摘要:
A semiconductor device in the form of an IGBT has a front side contact, a rear side contact, and a semiconductor volume disposed between the front side contact and the rear side contact. The semiconductor volume includes a field stop layer for spatially delimiting an electric field that can be formed in the semiconductor volume. The semiconductor volume further includes a plurality of semiconductor zones, the plurality of semiconductor zones spaced apart from each other and each inversely doped with respect to adjacent areas. The plurality of semiconductor zones are located within the field stop layer.
摘要:
A semiconductor device with a semiconductor body and to a method for producing it. In one embodiment, the semiconductor body has first electrodes which contact first highly doped semiconductor zones and complementary-conduction body zones surrounding the first semiconductor zones. The semiconductor body has a second electrode which contacts a second highly doped semiconductor zone. Between the second semiconductor zone and the body zones, a drift zone is arranged. Control electrodes which are insulated from the semiconductor body by a gate oxide and act on the body zones for controlling the semiconductor device are arranged on the semiconductor body. The body zones have minority charge carrier injector zones with complementary conduction to the body zones, arranged between the first semiconductor zones and the drift zone.
摘要:
A power semiconductor component includes a semiconductor body and a field electrode. The semiconductor body has a drift zone of a first conduction type and a further component defining a junction therebetween. The junction is configured to cause a space charge zone to propagate when a reverse voltage is applied to the junction. The field electrode is arranged adjacent to the drift zone, and is insulated from the semiconductor body by at least a dielectric layer. The dielectric layer has a first section and a second section, the first section arranged nearer to the junction and having a higher dielectric constant than the second section.
摘要:
A vertical semiconductor component having a semiconductor body, which has an inner region and an edge region that is arranged between the inner region and an edge of the semiconductor body. At least one semiconductor junction between a first semiconductor zone of a first conduction type, said first semiconductor zone being arranged in the region of a first side of the semiconductor body in the inner region, and a second semiconductor zone of the second conduction type, said second semiconductor zone adjoining the first semiconductor zone in the vertical direction. A contiguous third semiconductor zone of the second conduction type, said third semiconductor zone being arranged at a distance from the first semiconductor zone in the second semiconductor zone in the vertical direction of the semiconductor body and extending as far as the edge region in the lateral direction of the semiconductor body, and the doping of the third semiconductor zone being selected in such a manner that it is completely depleted of charge carriers when a reverse voltage is applied to the pn junction.