Multi-channel electro-optic receiver with polarization diversity and timing-skew management

    公开(公告)号:US12298564B2

    公开(公告)日:2025-05-13

    申请号:US18357131

    申请日:2023-07-23

    Abstract: An electro-optic receiver includes a polarization splitter and rotator (PSR) that directs incoming light having a first polarization through a first end of an optical waveguide, and that rotates incoming light from a second polarization to the first polarization to create polarization-rotated light that is directed to a second end of the optical waveguide. The incoming light of the first polarization and the polarization-rotated light travel through the optical waveguide in opposite directions. A plurality of ring resonators is optically coupled the optical waveguide. Each ring resonator is configured to operate at a respective resonant wavelength, such that the incoming light of the first polarization having the respective resonant wavelength optically couples into said ring resonator in a first propagation direction, and such that the polarization-rotated light having the respective resonant wavelength optically couples into said ring resonator in a second propagation direction opposite the first propagation direction.

    Optical input polarization management device and associated methods

    公开(公告)号:US12216312B2

    公开(公告)日:2025-02-04

    申请号:US18157055

    申请日:2023-01-19

    Abstract: An optical input polarization management device includes a polarization splitter and rotator (PSR) that directs a portion of incoming light having a first polarization through a first optical waveguide (OW). The PSR rotates a portion of the incoming light having a second polarization to the first polarization so as to provide polarization-rotated light. The PSR directs the polarization-rotated light through a second OW. Light within the first and second OW's is input to a first two-by-two optical splitter (2×2OS). A first phase shifter (PS) is interfaced with either the first or second OW. Light is output from the first 2×2OS into a third OW and a fourth OW. Light within the third and fourth OW's is input to a second 2×2OS. A second PS is interfaced with either the third or fourth OW. Light is output from the second 2×2OS into a fifth OW for further processing.

    Chip-to-chip optical data communication system

    公开(公告)号:US11994724B2

    公开(公告)日:2024-05-28

    申请号:US17671525

    申请日:2022-02-14

    Abstract: An optical input/output chiplet is disposed on a first package substrate. The optical input/output chiplet includes one or more supply optical ports for receiving continuous wave light. The optical input/output chiplet includes one or more transmit optical ports through which modulated light is transmitted. The optical input/output chiplet includes one or more receive optical ports through which modulated light is received by the optical input/output chiplet. An optical power supply module is disposed on a second package substrate. The second package substrate is separate from the first package substrate. The optical power supply module includes one or more output optical ports through which continuous wave laser light is transmitted. A set of optical fibers optically connect the one or more output optical ports of the optical power supply module to the one or more supply optical ports of the optical input/output chiplet.

    Electro-Optic Combiner and Associated Methods

    公开(公告)号:US20230059176A1

    公开(公告)日:2023-02-23

    申请号:US17982497

    申请日:2022-11-07

    Abstract: An electro-optic combiner includes a polarization splitter and rotator (PSR) that directs a portion of incoming light having a first polarization through a first optical waveguide (OW). The PSR rotates a portion of the incoming light having a second polarization to the first polarization to provide polarization-rotated light. The PSR directs the polarization-rotated light through a second OW. Each of the first and second OW's has a respective combiner section. The first and second OW combiner sections extend parallel to each other and have opposite light propagation directions. A plurality of ring resonators is disposed between the combiner sections of the first and second OW's and within an evanescent optically coupling distance of both the first and second OW's. Each of ring resonators operates at a respective resonant wavelength to optically couple light from the combiner section of the first OW into the combiner section of the second OW.

    Optical input polarization management device and associated methods

    公开(公告)号:US11561347B2

    公开(公告)日:2023-01-24

    申请号:US17353782

    申请日:2021-06-21

    Abstract: An optical input polarization management device includes a polarization splitter and rotator (PSR) that directs a portion of incoming light having a first polarization through a first optical waveguide (OW). The PSR rotates a portion of the incoming light having a second polarization to the first polarization so as to provide polarization-rotated light. The PSR directs the polarization-rotated light through a second OW. Light within the first and second OW's is input to a first two-by-two optical splitter (2×2OS). A first phase shifter (PS) is interfaced with either the first or second OW. Light is output from the first 2×2OS into a third OW and a fourth OW. Light within the third and fourth OW's is input to a second 2×2OS. A second PS is interfaced with either the third or fourth OW. Light is output from the second 2×2OS into a fifth OW for further processing.

    Hybrid multi-wavelength source and associated methods

    公开(公告)号:US11422322B2

    公开(公告)日:2022-08-23

    申请号:US16925101

    申请日:2020-07-09

    Abstract: A substrate includes a first area in which a laser array chip is disposed. The substrate includes a second area in which a planar lightwave circuit is disposed. The second area is elevated relative to the first area. A trench is formed in the substrate between the first area and the second area. The substrate includes a third area in which an optical fiber alignment device is disposed. The third area is located next to and at a lower elevation than the second area within the substrate. The planar lightwave circuit has optical inputs facing toward and aligned with respective optical outputs of the laser array chip. The planar lightwave circuit has optical outputs facing toward the third area. The optical fiber alignment device is configured to receive optical fibers such that optical cores of the optical fibers respectively align with the optical outputs of the planar lightwave circuit.

    Beam Steering Structure with Integrated Polarization Splitter

    公开(公告)号:US20220214509A1

    公开(公告)日:2022-07-07

    申请号:US17700367

    申请日:2022-03-21

    Abstract: A beam steering structure includes an alignment structure shaped to receive and align an optical fiber such that an axis of a core of the optical fiber is oriented in a first direction. The beam steering structure includes an end portion having an angled optical surface oriented at a non-zero angle relative to the first direction. The end portion is shaped and positioned so that light propagating along the first direction from the optical fiber passes through the end portion to reach the angled optical surface. A reflecting system is positioned on the angled optical surface across the first direction. The reflecting system is configured to reflect incident light propagating along the first direction into a first reflected beam of a first polarization and a second reflected beam of a second polarization. The first and second reflected beams are directed into first and second optical communication channels, respectively.

    Chip-to-Chip Optical Data Communication System

    公开(公告)号:US20220171142A1

    公开(公告)日:2022-06-02

    申请号:US17671525

    申请日:2022-02-14

    Abstract: An optical input/output chiplet is disposed on a first package substrate. The optical input/output chiplet includes one or more supply optical ports for receiving continuous wave light. The optical input/output chiplet includes one or more transmit optical ports through which modulated light is transmitted. The optical input/output chiplet includes one or more receive optical ports through which modulated light is received by the optical input/output chiplet. An optical power supply module is disposed on a second package substrate. The second package substrate is separate from the first package substrate. The optical power supply module includes one or more output optical ports through which continuous wave laser light is transmitted. A set of optical fibers optically connect the one or more output optical ports of the optical power supply module to the one or more supply optical ports of the optical input/output chiplet.

    Ring Resonator with Integrated Photodetector for Power Monitoring

    公开(公告)号:US20220146306A1

    公开(公告)日:2022-05-12

    申请号:US17582900

    申请日:2022-01-24

    Abstract: A ring resonator device includes a passive optical cavity having a circuitous configuration into which is built a photodetector device. The photodetector device includes a first implant region formed within the passive optical cavity that includes a first type of implanted doping material. The photodetector device includes a second implant region formed within the passive optical cavity that includes a second type of implanted doping material, where the second type of implanted doping material is different than the first type of implanted doping material. The photodetector device includes an intrinsic absorption region present within the passive optical cavity between the first implant region and the second implant region. A first electrical contact is electrically connected to the first implant region and to a detecting circuit. A second electrical contact is electrically connected to the second implant region and to the detecting circuit.

Patent Agency Ranking