摘要:
A method of making a semiconductor device is disclosed. A target mask pattern is provided which includes features to be exposed on the mask, and features to be non-exposed on the mask. The to be exposed features are fractured by searching for geometries on the target mask pattern that meet one or more conditions, identifying mask pattern structures to be fractured, fracturing the identified pattern structures according to a fracture instruction list, creating a set of mask exposure patterns, exposing the mask to the mask exposure pattern, and developing the mask.
摘要:
A method of training an Optical Proximity Correction (OPC) model comprises symmetrizing a complex design to be a test pattern having orthogonal symmetry. Symmetrizing may comprise establishing a axis of symmetry passing through the design, thereby dividing the design into two portions; deleting one of the two portions; and mirror-imaging the other of the two portions about the axis of symmetry. The design may be centered.
摘要:
System and method for using adjustment patterns as well as physical parameters as targets to control mask structure dimensions using optical proximity correction. A method for correcting layer patterns comprises selecting optimum sacrificial patterns, defining virtual targets from the optimum sacrificial patterns, and executing an optical proximity correction process with the virtual targets to correct layer patterns. The selecting of the optimum sacrificial patterns may be performed in a separate processing stage, thereby reducing the number of targets to be investigated during a process window optical proximity correction, thereby reducing the runtime, processing, and memory requirements.
摘要:
A method for generating a mask pattern is provided. A target lithographic pattern comprising a plurality of first geometric regions is provided, wherein the regions between the plurality of first geometric regions comprise first spaces. The target lithographic pattern is transformed, and the transformed pattern is decomposed into a first pattern and a second pattern.
摘要:
A method of making a semiconductor device is disclosed. A target mask pattern is provided which includes features to be exposed on the mask, and features to be non-exposed on the mask. The to be exposed features are fractured by searching for geometries on the target mask pattern that meet one or more conditions, identifying mask pattern structures to be fractured, fracturing the identified pattern structures according to a fracture instruction list, creating a set of mask exposure patterns, exposing the mask to the mask exposure pattern, and developing the mask.
摘要:
Lithography masks and methods of manufacture thereof are disclosed. A preferred embodiment comprises a method of manufacturing a lithography mask. The method includes providing a substrate, forming a first pattern in a first region of the substrate, and forming a second pattern in a second region of the substrate, the second pattern comprising patterns for features oriented differently than patterns for features of the first pattern. The method includes affecting a polarization rotation of light differently in the first region than in the second region of the substrate.
摘要:
A method of inspecting a mask or reticle, the mask or reticle being provided with a pattern to be transferred onto a semiconductor wafer, the pattern having a defect, includes the step of creating a plurality of logical zones and uniquely associating each of said logical zones with a surface area of said pattern. Then, an inspection rule representing a characteristic sensitivity for detecting a defect is associated with each of said logical zones. An image of said pattern is then recorded and compared with a reference image of an ideal pattern for locating a defect within said pattern. One of said logical zones is then identified with said located defect and that inspection rule which is associated with said identified logical zone is retrieved from a memory. The inspection rule is then applied to a characteristic of said defect for determining, whether said defect is to be repaired. A signal can be issued in response to said determination.
摘要:
The invention relates to a method for production of contacts on a wafer, preferably with the aid of a lithographic process. The preferred embodiment provides a method which overcomes the disadvantages of the complex point/hole lithography process, and which avoids any increase in the process complexity. This method is achieved in that a strip structure extending over two layers is used to structure the contacts. The strip structure in the first layer is rotated at a predetermined angle with respect to the strip structure in the second layer, and the contacts are formed in the mutually overlapping areas of the strip structures in the two layers.
摘要:
A mask is configured for projecting a structure pattern onto a semiconductor substrate in an exposure unit. The exposure unit has a minimum resolution limit for projecting the structure pattern onto the semiconductor substrate. The mask has a substrate, at least one raised first structure element on the substrate which has a lateral extent which is at least the minimum lateral extent that can be attained by the exposure unit, a configuration second raised structure elements which are arranged in an area surrounding the at least one first structure element on the substrate in the form of a matrix with a row spacing and a column spacing, whose shape and size are essentially identical to one another, and which have a respective lateral extent that is less than the minimum resolution limit of the exposure unit.
摘要:
The method of dynamically monitoring a reticle includes preventively macro monitoring and defect inspecting with regard to mechanical loading, including particle deposits or electrostatically induced damage, and energy load, including the associated changes to the reticle material and surface characteristics. Different surface distributions of the absorber layer as well as characteristics of the exposure system, such as N2 purging of the projection lens/reticle area in order to reduce contamination and recrystallization on optically active surfaces are considered.