Abstract:
A method for fabricating a capacitor over a semiconductor substrate is disclosed. The method includes the steps of: forming an insulating layer over the semiconductor substrate; forming a contact opening through the insulating layer to expose a portion of the semiconductor substrate; forming a first polysilicon layer over the insulating layer and filling in the contact opening to electrically contact the semiconductor substrate; patterning the first polysilicon layer to the insulating layer surface, thereby forming a trench for defining a capacitor region; forming a thin polysilicon layer with a rugged surface over the first polysilicon layer and the insulating layer; forming a mask layer over the thin polysilicon layer, wherein the mask layer has a smaller thickness in the trench bottom than in other regions; removing the mask layer in the trench bottom through an anisotropical etch step; removing the uncovered portions of the thin polysilicon layer to expose the insulating layer surface; removing the mask layer, thereby forming a storage electrode consisting of the thin polysilicon layer and the first polysilicon layer; forming a dielectric layer over the storage electrode and the exposed insulating layer; and forming a second polysilicon layer over the dielectric layer.
Abstract:
A vertical DRAM and fabrication method thereof. The vertical DRAM has a plurality of memory cells on a substrate, and each of the memory cells has a trench capacitor, a vertical transistor, and a source-isolation oxide layer in a deep trench. The main advantage of the present invention is to form an annular source diffusion and an annular drain diffusion of the vertical transistor around the sidewall of the deep trench. As a result, when a gate of the transistor is turned on, an annular gate channel is provided. The width of the gate channel of the present invention is therefore increased.
Abstract:
The present invention discloses a multi-bit stacked-type non-volatile memory having a spacer-shaped floating gate and a manufacturing method thereof. The manufacturing method includes forming a patterned dielectric layer containing arsenic on a semiconductor substrate, wherein the patterned dielectric layer defines an opening as an active area. A dielectric spacer is formed on a side wall of the patterned dielectric layer and a gate dielectric layer is formed on the semiconductor substrate. A source/drain region is formed by thermal driving method making arsenic diffusion from the patterned dielectric layer into the semiconductor substrate. A spacer-shaped floating gate is formed on the side wall of the dielectric spacer and the gate dielectric layer. An interlayer dielectric layer is formed on the spacer-shaped floating gate. A control gate is formed on the interlayer dielectric layer and fills the opening of the active area.
Abstract:
A stacked gate flash memory device and method of fabricating the same. A cell of the stacked gate flash memory device is disposed in a cell trench within a substrate to achieve higher integration of memory cells.
Abstract:
A method for fabricating electrodes of a capacitor over a semiconductor substrate is disclosed. The method includes the steps of: forming a base insulating layer over the semiconductor substrate; forming a stacked layer, including an insulating layer and a mask layer, over the base insulating layer; defining the stacked layer to form an opening to the base insulating layer; forming a first conducting layer over the stacked layer; forming a spacer on the sidewall of the first conducting layer in the opening; etching the bottom of the opening by using the mask layer and the spacer as a mask to expose a portion of the semiconductor substrate; forming a second conducting layer in the opening to electrically connect the exposed semiconductor substrate; and removing the spacer to leave the first and the second conducting layers as a capacitor electrode.