摘要:
The present invention provides adjusting of a radio frequency (RF) receiver that includes processing that begins by enabling an initial setting of the RF receiver, wherein the initial setting is based on a bandwidth of a channel of a plurality of channels. The processing continues by receiving an RF signal containing a preamble of a frame via one of the plurality of channels. The processing continues by converting the RF signal to a baseband signal based on the initial setting. The processing continues by determining channel type of the one of the plurality of channels based on the baseband signal. The processing continues by determining whether the channel type corresponds to the bandwidth of the initial setting. The processing continues by, when the channel type does not correspond to the bandwidth of the initial setting, adjusting setting of the RF receiver based on the channel type.
摘要:
Aspects of the invention described herein may enable a greenfield access mode in IEEE 802.11n WLAN systems in comparison to an alternative approach that may not provide greenfield access. The utilization of greenfield access may reduce the portion of time required to transmit data due to overhead comprising preamble fields and header fields. This may enable higher data throughput rates to be achieved. This may further enable more robust transmission of data by enabling comparable data rates to be maintained while reducing the coding rate of encoded transmitted data. The reduction of the coding rate may enable comparable data rates to be maintained for transmission via RF channels characterized by lower SNR while still achieving desired target levels of packet error rates. In another aspect of the invention, mixed mode access may be achieved while reducing the portion of time required for transmitting data due to overhead.
摘要:
A method for asymmetrical MIMO wireless communication begins by determining a number of transmission antennas for the asymmetrical MIMO wireless communication. The method continues by determining a number of reception antennas for the asymmetrical MIMO wireless communication. The method continues by, when the number of transmission antennas exceeds the number of reception antennas, using spatial time block coding for the asymmetrical MIMO wireless communication. The method continues by, when the number of transmission antennas does not exceed the number of reception antennas, using spatial multiplexing for the asymmetrical MIMO wireless communication.
摘要:
A control device includes at least one communication interface for communicating first control data with a first plurality of communication devices that utilize the millimeter wave frequency band in accordance with a first protocol and further for communicating second control data with a second plurality of communication devices that utilize the millimeter wave frequency band in accordance with a second protocol. A resource controller allocates resources of the millimeter wave frequency band to the first plurality of communication devices and the second plurality of communication devices based on the first control data and the second control data.
摘要:
A control device includes a first communication interface for communicating first control data with a first plurality of communication devices that utilize the millimeter wave frequency band in accordance with a first protocol, wherein the first communication interface utilizes the millimeter wave frequency band in accordance with the first protocol. A second communication interface communicates second control data with a second plurality of communication devices that utilize the millimeter wave frequency band in accordance with a second protocol, wherein the second communication interface utilizes the millimeter wave frequency band in accordance with the second protocol. A resource controller allocates resources of the millimeter wave frequency band to the first plurality of communication devices and the second plurality of communication devices based on the first control data and the second control data.
摘要:
A wireless local area network (WLAN) transmitter includes a MAC module, a PLCP module, and a PMD module. The Medium Access Control (MAC) module is operably coupled to convert a MAC Service Data Unit (MSDU) into a MAC Protocol Data Unit (MPDU) in accordance with a WLAN protocol. The Physical Layer Convergence Procedure (PLCP) Module is operably coupled to convert the MPDU into a PLCP Protocol Data Unit (PPDU) in accordance with the WLAN protocol. The Physical Medium Dependent (PMD) module is operably coupled to convert the PPDU into a plurality of radio frequency (RF) signals in accordance with one of a plurality of operating modes of the WLAN protocol, wherein the plurality of operating modes includes multiple input and multiple output combinations.
摘要:
A wireless transceiver includes a plurality of phased array antennas, that transmit an outbound RF signal containing outbound data to remote transceivers and that receives an inbound RF signal containing inbound data from the remote RF transceivers, wherein the plurality of phased array antennas are each configurable based on a control signal. An antenna configuration controller generates the control signal to configure the phased array antenna to hop among a plurality of radiation patterns based on a hopping sequence. An RF transceiver section generates the outbound RF signal based on the outbound data and that generates the inbound data based on the inbound RF signal. In one configuration, a switching section selectively couples a selected one of the plurality of phased array antennas to the RF transceiver section, based on the control signal. In figuration, the RF transceiver section includes an RF section for each antenna array.
摘要:
A method and apparatus for assigning holding packets in a wireless communication system or network includes determining an invalid station address that corresponds to an invalid station and that does not correspond to the address of an affiliated station. The invalid station address is assigned to a holding packet. The holding packet is transmitted to allocate a transmit period to the invalid station. This generates a quiet time in the wireless communication system or network during the transmit period.
摘要:
A radio frequency integrated circuit includes a transmitter section, and a receiver section. The receiver section includes a low noise amplifier, down conversion module, an orthogonal-normalizing module, and a baseband processor. The low noise amplifier is operably coupled to amplify the inbound RF signals to produce amplified inbound signals. The down conversion module is operably coupled to convert the amplified inbound RF signals into baseband in-phase components and baseband quadrature components. The orthogonal normalizing module is operably coupled to obtain a 1st and 2nd coefficients that are based on at least one of power of the baseband in-phase components, power of the baseband quadrature components, and/or cross-correlation between the baseband in-phase component and baseband quadrature components. The orthogonal normalizing module then normalizes an orthogonal relationship between the in-phase components and quadrature components based on the 1st and 2nd coefficients to produce normalized in-phase components and normalized quadrature components.
摘要:
A method for wireless communication between stations of differing protocols begins by determining whether protocols of target stations of a wireless communication are different than a protocol of a source station. The method continues by, when at least one of the target stations has a different protocol than the protocol of the source station, determining whether the wireless communication is a direct wireless communication or an indirect wireless communication. The method continues with the source station transmitting a frame to an access point, wherein the frame is formatted in accordance with the protocol of the source station, when the wireless communication is the indirect wireless communication. The method continues with the access point converting the frame into at least one alternate frame based on the protocol of the at least one of the target stations having the different protocol. The method continues with the access point transmitting the at least one alternate frame to the at least one of the target stations.