Abstract:
Amphoteric polymer composite nanoparticles are added into the polymer grains of synthetic fibers. The synthetic fibers are woven to form a textile capable of adjusting pH value.
Abstract:
A method for manufacturing an anti-reflection structure is provided. The method includes the following steps: First, a to-be-treated object is provided in a reactive area. Next, a plasma source is provided in the reactive area. Then, the plasma source is ionized to form plasma in atmospheric pressure. Next, the surface of the to-be-treated object is treated by plasma so as to form a plurality of micro-protuberances on the surface of the to-be-treated object.
Abstract:
Embodiments are directed to establishing the integrity of a portion of data on at least one level of a plurality of network stack levels and automatically continuing an established federation relationship between at least two federation computer systems. In an embodiment, a first federation computer system receives a digital signature corresponding to a computer system signed by a digital signature which includes the computer system's identity and other federation relationship information configured to establish a trusted federation relationship between a first federation computer system and a second federation computer system. The first federation computer system attempts to validate the received digital signature at a first level of a network stack and determines that the validation at the first network stack layer was unsuccessful. The first federation computer system then validates the received digital signature at a second, different level of the network stack.
Abstract:
System and method for improving immersion scanner overlay performance are described. One embodiment is a method of improving overlay performance of an photolithography immersion scanner including a wafer table having lens cooling water (“LCW”) disposed in a water channel therein, the wafer table having an input for receiving the LCW into the water channel and an output for expelling the LCW from the water channel. The method includes providing a water tank that connects to at least one of the wafer table input and the wafer table output; monitoring a pressure of water in the water tank; and maintaining the pressure of the water in the water tank at a predetermined level.
Abstract:
A flat display device includes a flat display panel, an upper polarizing plate disposed on a light exit plane of the flat display panel, and a lower polarizing plate disposed on a light entrance plane of the flat display panel. The upper polarizing plate includes a wide view film, and its absorption axis and a horizontal view direction of the flat display panel have an included angle of about 15 degrees. The absorption axis of the lower polarizing plate and the horizontal view direction of the flat display panel have an included angle of about 105 degrees.
Abstract:
A solar cell includes a substrate, a lower conductor layer, an anti-reflection coating (ARC) layer and an upper conductor layer. The substrate has a front side, a back side and a doped region adjacent to the front side. The lower conductor layer has a first portion embedded into the doped region and a second portion other than the first portion. The ARC layer is disposed on the front side of the substrate and covers the lower conductor layer such that the second portion of the lower conductor layer is disposed in the ARC layer. The upper conductor layer has a first portion embedded into the ARC layer and a second portion other than the first portion of the upper conductor layer. The second portion of the upper conductor layer is exposed out of the ARC layer, and the upper conductor layer is electrically connected to the lower conductor layer.
Abstract:
A solid-state light emitting display and a fabrication method thereof are proposed. The light emitting display includes a metallic board formed with conductive circuits, and a plurality of luminous microcrystals disposed on a surface of the metallic board and electrically connected to the conductive circuits. The metallic board provides the features of lightness and thinness, and flexibility, and the luminous microcrystals are in the form of light emitting components, so as to improve the luminous efficiency of display and attain the effect of environmental protection and energy saving, thereby providing display technology with performance satisfactory for various display requirements.
Abstract:
An apparatus for selectively heating/cooling one or more substrates and establishing an approximately uniform temperature in the one or more substrates during a heating or cooling event is described. In one embodiment, the apparatus comprises a rotatable hot/cold plate onto which the one or more substrates are placed and a heating/cooling element disposed in close proximity to the rotatable hot/cold plate for selectively elevating/lowering the temperature of the one or more substrates.
Abstract:
A digital camera module (100) includes a lens module (20) and a chip package (50) mounted in a light path of the lens module. The lens module includes a first lens assembly (21) and a second lens assembly (23). The first lens assembly includes a first fixture (211) having a through hole (212) defined therein and at least one lens (218) received in the through hole. The second assembly includes a second fixture (23) having a through hole (232) defined therein and at least one lens (238) attached therein. One of the first fixture and the second fixture has a slotted annular ring (213) protruding therefrom with an annular slot (214) defined therein. The other has a male annular ring (235) extending therefrom, and the slotted annular ring and the male annular ring matingly engage with each other to fix the first lens assembly and second assembly together.
Abstract:
A digital camera module (100) includes a chip package (110) and a lens module (130), mounted on the chip package, for forming a focused image on the chip package. The chip package includes a supporter (112), a chip (114), a plurality of wires (116), a main adhesive (118), and a cover plate (119). The supporter includes a through hole defined therethrough and has a plurality of top contacts (1130) formed thereon around the through hole. The chip is disposed in the through hole and includes a plurality of pads (1144) arranged thereon. The wires electrically connect the pads to the top contacts. The main adhesive is applied to a gap between the chip and the supporter and fixes the chip to the supporter. The cover plate is adhered and supported on the main adhesive. A method for making the chip package is also provided.