Abstract:
The present invention provides a process and a structure for increasing a capacitance of a stack capacitor. The process includes steps of: a) forming a contact hole on a silicon substrate having an oxide layer, b) forming a polysilicon contact plug of a first polysilicon layer in the contact hole; c) forming a second gibbous polysilicon layer on a surface of the contact plug, and d) forming a third polysilicon layer above the gibbous polysilicon layer and a portion of the oxide layer to form the stack capacitor, wherein the gibbous polysilicon layer increases the capacitance of the stack capacitor.
Abstract:
A method for forming stacked capacitors for DRAMs using a single photoresist mask and having bottom electrodes self-aligned to node contacts is achieved. A planar silicon oxide (SiO.sub.2) first insulating layer is formed over device areas. A first silicon nitride (Si.sub.3 N.sub.4) hard mask layer is deposited and a second insulating layer is deposited. First openings are etched, partially into the first insulating layer, for the capacitor bottom electrodes. A second Si.sub.3 N.sub.4 layer is deposited and etched back to form sidewall spacers in the first openings. The Si.sub.3 N.sub.4 hard mask and spacers are used to etch second openings (node contacts) in the first insulating layer, self-aligned in the first openings and to the source/drain contact areas. A first polysilicon layer is deposited and etched back to form recessed polysilicon plugs in the first openings. A third Si.sub.3 N.sub.4 layer is deposited and etched back to form sidewall spacers on the plugs in the first openings and is used as a mask to etch the polysilicon to form the vertical sidewalls of the bottom electrodes self-aligned to the node contacts. The first insulating layer is recessed to expose the bottom electrodes. An interelectrode dielectric layer is formed on the bottom electrodes, and a patterned second polysilicon layer is used for the top electrodes.
Abstract translation:实现了使用单个光致抗蚀剂掩模形成用于DRAM的堆叠电容器并且具有与节点接触自对准的底部电极的方法。 在器件区域上形成平面氧化硅(SiO 2)第一绝缘层。 沉积第一氮化硅(Si 3 N 4)硬掩模层并沉积第二绝缘层。 对于电容器底部电极,第一开口部分地被蚀刻到第一绝缘层中。 第二Si 3 N 4层被沉积并回蚀刻以在第一开口中形成侧壁间隔物。 Si 3 N 4硬掩模和间隔物用于蚀刻第一绝缘层中的第二开口(节点接触),在第一开口中和源/漏接触区域中自对准。 沉积第一多晶硅层并将其回蚀刻以在第一开口中形成凹陷的多晶硅塞。 沉积第三个Si 3 N 4层并回蚀刻以在第一开口中的插塞上形成侧壁间隔物,并且用作掩模以蚀刻多晶硅以形成与节点接触件自对准的底部电极的垂直侧壁。 第一绝缘层凹进露出底部电极。 在底部电极上形成电极间电介质层,并且将图案化的第二多晶硅层用于顶部电极。
Abstract:
A method for fabricating a very narrow electrical isolation trench in a semiconductor substrate for isolating the individual field effect transistors (FETs) is achieved. This method eliminates the oxide encroachment into the device area associated with LOCOS techniques, thereby increasing device density. The method involves etching trenches, less than one half micrometer in width in the silicon substrate and forming sidewall spacer in the trench. The trench is filled with doped polysilicon and planarized, forming a trench which is planar with the device region. These isolation trenches are made in both N and P-wells for fabricating CMOS circuits having ULSI densities.
Abstract:
A method of forming a semiconductor structure includes providing a substrate including a fin at a surface of the substrate, and forming a fin field-effect transistor (FinFET), which further includes forming a gate stack on the fin; forming a thin spacer on a sidewall of the gate stack; and epitaxially growing a epitaxy region starting from the fin. After the step of epitaxially growing the epitaxy region, a main spacer is formed on an outer edge of the thin spacer. After the step of forming the main spacer, a deep source/drain implantation is performed to form a deep source/drain region for the FinFET.
Abstract:
A method of forming a semiconductor structure includes providing a substrate including a fin at a surface of the substrate, and forming a fin field-effect transistor (FinFET), which further includes forming a gate stack on the fin; forming a thin spacer on a sidewall of the gate stack; and epitaxially growing a epitaxy region starting from the fin. After the step of epitaxially growing the epitaxy region, a main spacer is formed on an outer edge of the thin spacer. After the step of forming the main spacer, a deep source/drain implantation is performed to form a deep source/drain region for the FinFET.
Abstract:
The present disclosure provides an integrated circuit. The integrated circuit includes a first operational device having a first transistor of a first composition; a second operational device having a second transistor of the first composition; and an isolation transistor disposed between the first and second transistors, the isolation transistor having a second composition different from the first composition.
Abstract:
A frequency jitter generator and a frequency jitter PWM controller are provided for overcoming the shortcoming that a conventional PWM controller reduces the electromagnetic interference issue by means of varying the operating frequency of the PWM controller based on an input voltage, while resulting in the uncertainty of the range of frequency jitter and the difficulty circuit design due to the effect of the input voltage and the load. The frequency jitter generator and PWM controller adjust the range of frequency jitter by using a signal within a fixed voltage range. The invention not only gets rid of the effect of the input voltage and the loading, but also simplifies the circuit design by fixing the range of frequency jitter no greater than a predetermined percentage regardless of the operating frequency of the PWM controller.
Abstract:
A high-speed PWM control apparatus with adaptive voltage position and a driving signal generating method thereof is provided. The present invention automatically detects a change in the loading and adjusts the voltage position instantaneously for stabilizing the voltage and reducing the loading output power consumption. The present invention does not require a clock signal to generate a driving signal and does not require an error amplifier to control the modulation. Therefore, the present invention has a fast transient response that responds to the change of the loading instantaneously and has a stabilizing effect. When the apparatus is on a continuous conduction mode (CCM), the switching frequency of the controller is still fixed even though the input voltage Vin and the output voltage Vout are changed. The electrical-magnetic noise disturbance is improved.
Abstract:
A method to reduce the inverse narrow width effect in NMOS transistors is described. An oxide liner is deposited in a shallow trench that is formed to isolate active areas in a substrate. A photoresist plug is formed in the shallow trench and is recessed below the top of the substrate to expose the top portion of the oxide liner. An angled indium implant through the oxide liner into the substrate is then performed. The plug is removed and an insulator is deposited to fill the trenches. After planarization and wet etch steps, formation of a gate dielectric layer and a patterned gate layer, the NMOS transistor exhibits an improved Vt roll-off of 40 to 45 mVolts for both long and short channels. The improvement is achieved with no degradation in junction or isolation performance. The indium implant dose and angle may be varied to provide flexibility to the process.
Abstract:
A tent comprising a shaft, a protective cover, a handle and a plurality number of supporting ribs; the upper, lower shaft design and the supporting ribs is easy for storage; a running ring below the runner is on the upper shaft, two ropes connecting to the runner and running ring respectively stretch out from a cap and connect to an opening ring and a closing ring respectively as the open and close switches, a zipper door is on one side of the protective cover, a ground mats covering ground stretches from the bottom of the protective cover, the ground mats has a tri-directional zipper.