Abstract:
A glass element having a thickness from 25 μm to 125 μm, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress GI of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
Abstract:
Disclosed herein are glass pharmaceutical vials having sidewalls of reduced thickness. In embodiments, the glass pharmaceutical vial may include a glass body comprising a sidewall enclosing an interior volume. An outer diameter D of the glass body is equal to a diameter d1 of a glass vial of size X as defined by ISO 8362-1, wherein X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1. However, the sidewall of the glass pharmaceutical vial comprises an average wall thickness Ti that is less than or equal to 0.85*s1, wherein s1 is a wall thickness of the glass vial of size X as defined by ISO 8362-1 and X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1.
Abstract:
Disclosed herein are glass pharmaceutical vials having sidewalls of reduced thickness. In embodiments, the glass pharmaceutical vial may include a glass body comprising a sidewall enclosing an interior volume. An outer diameter D of the glass body is equal to a diameter d1 of a glass vial of size X as defined by ISO 8362-1, wherein X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1. However, the sidewall of the glass pharmaceutical vial comprises an average wall thickness Ti that is less than or equal to 0.85*s1, wherein s1 is a wall thickness of the glass vial of size X as defined by ISO 8362-1 and X is one of 2R, 3R, 4R, 6R, 8R, 10R, 15R, 20R, 25R, 30R, 50R, and 100R as defined by ISO 8362-1.
Abstract:
A method includes heating a glass preform having a plurality of glass layers and drawing the glass preform in a distal direction to form a drawn glass sheet extending distally from the glass preform and having the plurality of glass layers. The drawn glass sheet is thinner than the glass preform. The drawn glass sheet can be rolled onto a collection spool. At least a portion of a glass layer can be removed from the drawn glass sheet. An exemplary glass sheet includes a first glass layer, a second glass layer adjacent to the first glass layer, and a thickness of at most about 0.1 mm. An exemplary ion exchanged glass sheet includes a thickness of at most about 0.1 mm and a surface layer that is under a compressive stress and extends into an interior of the glass sheet to a depth of layer.
Abstract:
Shaped glass structures, in particular to curved glass structures, having optically improved transmittance are provided along with methods of making such glass structures. Articles and methods described herein mask tube or reforming defects with help of refractive index-matching substances (e.g. optically clear adhesives) and/or additional glass layers. The articles and methods are applicable to any shaped glass, and is particularly useful for 3D-shaped parts for use in portable electronic devices.
Abstract:
A glass element having a thickness from 25 μm to 125 μm, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress σI of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
Abstract:
A glass element having a thickness from 25 μm to 125 μm, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress σI of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
Abstract:
An apparatus for forming glass tubing is described. The apparatus for forming glass tubing comprises an endless former with an outer surface and an inner passage defining an inner surface. The apparatus for forming glass tubing further comprises two chambers from which molten glass may flow. One chamber flows molten glass to the outer surface of the endless former and another chamber flows molten glass to the inner surface of the endless former. The two flows of molten glass meet at the bottom of the former to form glass tubing.
Abstract:
An apparatus (100) for making glass tubing (200) of a desired non-circular cross-sectional profile (cf FIG. 3) includes a mandrel (101) adapted for positioning proximate heat-softened tubing. The mandrel (101) has a nose (102) and a nozzle section (120) with a chosen profile that will define a final cross-sectional profile of the tubing. The nozzle section (120) has a feed chamber (140) for receiving a gas from a source (207) and a porous and/or foraminous circumferential surface (132,134) through which the gas can be discharged to an exterior of the mandrel. The gas discharges to the exterior of the mandrel, forming a film of pressurized gas in the gap (314, 318) between the porous circumferential surface (132,134) and the heat-softened tubing (200). A method of forming tubing having a non-circular cross-sectional profile using the apparatus is also provided. A glass sleeve made from the reshaped or formed tubing is also disclosed: a monolithic sleeve made of parallel, opposite, flat and smooth front and back covers for use in an electronic device (cf FIG. 13). Some glass-ceramic materials may also be suitable for the tubing, such as transparent beta spodumene.
Abstract:
A glass element having a thickness from 25 μm to 125 μm, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress σI of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is held at a bend radius from about 1 mm to about 20 mm for at least 60 minutes at about 25° C. and about 50% relative humidity. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.