Abstract:
A method of making an aliphatic polyester prepolymer, comprising: reacting, alone or in combination with other reactants, a diol with at least a first diacid (or a diester of said first diacid) to produce an aliphatic polyester prepolymer. The first diacid is preferably a trans-beta-hydromuconic acid (HMA). In some embodiments, the diol contains at least one ether linkage. In some embodiments the diol is further reacted with at a second diacid, or a diester of said second diacid, wherein said second diacid is different from said first diacid. Prepolymers produced from such processes and articles formed therefrom are also described.
Abstract:
The reactor pump for hydrolytic splitting of cellulose is configured to pump cellulose, under high pressure, with low availability of sugar into a reactor. The reactor has an upstream transition segment connected to a downstream reaction chamber. The transition segment has an inlet that is smaller than the outlet. The inner walls taper outward. The chamber has an inlet that is larger than the discharge outlet. The inner walls taper inward. The transition segment outlet has an area that is substantially the same as the area of the chamber inlet. Back pressure in the chamber forms a cellulose plug within the inlet of the transition segment. The plug stops cellulose from escaping out the inlet. High pressure pumping forms a cellulose plug within the discharge outlet of the chamber. The plug slows downstream movement of the cooking cellulose giving the cellulose time to cook. Cooking cellulose begins to breakdown under heat and the injection of acid, if required. The outer surface of the plug is cooked faster than the inner core and in the process the faster cooking portion of the plug becomes a liquefied slurry. The slurry lies between the inwardly tapering chamber walls and the less cooked inner core. The slurry slides faster towards the discharge outlet than does the inner core. As the slurry moves downstream in the chamber, the surface of the inner core moves to the walls and in turn is liquefied. Cellulose may be pre-treated prior to entry in the reactor by the addition of water and a weak acid such as sulfuric or ammonium. The cellulose may be granulated to provide more surface area to assist break down in the reactor.
Abstract:
Light-collimating films as well as other microstructured film articles are described that comprise a (e.g. UV) cured light transmissive film comprising the reaction product of a polymerizable resin composition. Polymerizable resin compositions are also described that comprise aliphatic urethane(meth)acrylate oligomer(s), bisphenol-A ethoxylated diacrylate(s), and a crosslinker having at least three (meth)acrylate groups.
Abstract:
Presently described are (e.g. brightness enhancing film) optical articles comprising the reaction product of a polymerizable resin and surface modified inorganic nanoparticles, methods of surface modifying inorganic nanoparticles, and surface modified inorganic nanoparticles. The surface treatment comprises at least one monocarboxylic acid having a refractive index of at least 1.50 and/or at least one monocarboxylic acid having a Mn of at least 200 g/mole and an ethylenically unsaturated group and/or at least one dicarboxylic acid.
Abstract:
A vacuum adhesion-gripping surface is provided by an array of miniature suction cups. The surface is provided on a glove or other object for which an improved grip is desired. The miniature suction cups are of very small sizes and high densities. The vacuum adhesion micro suction cups are formed with a tooling structure having a pair of plates. A first plate includes a plurality of holes and a second plate includes a plurality of pins. When the plates are placed together, small cavities are created between the holes and pins for forming an array of vacuum adhesion micro suction cups using a molding or similar process. Alternatively a glove, such as a medical glove, utilizing the micro suction cup gripping design can be made using a dipping process.
Abstract:
The present invention provides pressure-sensitive adhesives having a refractive index of at least 1.48. The pressure-sensitive adhesives comprise at least one monomer containing a substituted or an unsubstituted aromatic moiety.
Abstract:
A transcutaneous energy transfer system, transcutaneous charging system, external power source, external charger and methods of transcutaneous energy transfer and charging for an implantable medical device and an external power source/charger. The implantable medical device has a secondary coil adapted to be inductively energized by an external primary coil at a carrier frequency. The external power source/charger has a primary coil and circuitry capable of inductively energizing the secondary coil by driving the primary coil at a carrier frequency adjusted to the resonant frequency to match a resonant frequency of the tuned inductive charging circuit, to minimize the impedance of the tuned inductive charging circuit or to increase the efficiency of energy transfer.
Abstract:
In general, the invention is directed to a patient programmer for an implantable medical device. The patient programmer may include one or more of a variety of features that may enhance performance, support mobility and compactness, or promote patient convenience.