Abstract:
A microvalve includes a first plate having a surface, a recessed region provided within the surface, a fluid port provided within the recessed region, and a sealing structure extending about the fluid port. A second plate defines a non-movable portion and a movable portion formed within the first opening and having an axis. A surface of the non-movable portion abuts the surface of the first plate, the non-movable portion having first and second openings formed therethrough. The first opening has a notch formed in each of two longitudinally extending side walls thereof. The movable portion defines a displaceable member connected to the non-movable portion by a convoluted spring formed in a second opening. The displaceable member has a tab extending outwardly from each of two longitudinally extending side walls thereof, each tab positioned within one of the notches. The displaceable member is slidingly and axially movable within the first opening between a closed position, wherein the displaceable member cooperates with the sealing structure to prevent fluid communication through the fluid port, and an opened position, wherein the displaceable member does not cooperate with at least a portion of the sealing structure to prevent fluid communication through the fluid port. The notches define stop surfaces that limit travel of the displaceable member between the closed position and the open position.
Abstract:
A microvalve includes a first plate having a surface defining an actuator cavity. A second plate has a surface that abuts the surface of the first plate and includes a displaceable member that is disposed within the actuator cavity for movement between a closed position, wherein the displaceable member prevents fluid communication through the microvalve, and an opened position, wherein the displaceable member does not prevent fluid communication through the microvalve. An actuator is connected to the displaceable member and has only one or two pairs of actuator ribs.
Abstract:
A valve assembly is configured to regulate the flow of an isolated fluid therethrough and includes a first valve stage configured to control the flow of a first fluid through a first fluid circuit, and a second valve stage configured to control the flow of a second fluid through a second fluid circuit. The first valve stage is connected to the second valve stage such that the first fluid acts on the second valve stage to move the second valve stage between open and closed positions. The second fluid flowing through the second valve stage is also isolated from the first fluid flowing through the first valve stage.
Abstract:
A method of manufacturing a MEMS package includes initially providing a substrate formed of a first material and defining a bore therein. The bore is substantially completely lined with a second material that is different from the first material. A micromachined component having a fluid passageway formed therein is affixed to the substrate such that the bore and the fluid passageway are in fluid communication.
Abstract:
A method of bonding an electrical component to a substrate includes applying solder paste on to a substrate. Solder preform has an aperture is formed therethrough and is then urged into contact with the solder paste, such that solder paste is urged through the aperture. An electrical component is then urged into contact with the solder preform and into contact with the solder paste that has been urged through the aperture, thereby bonding the electrical component, the solder preform, and the substrate together to define a reflow subassembly.