Abstract:
The present disclosure provides systems and methods associated with acoustic transmitters, receivers, and antennas. Specifically, the present disclosure provides a transducer system for transmitting and receiving acoustic energy according to a determined acoustic emission/reception pattern. In various embodiments, an acoustic transducer system may include an array of sub-wavelength transducer elements each configured with an electromagnetic resonance at one of a plurality of electromagnetic frequencies. Each sub-wavelength transducer element may generate an acoustic emission in response to the electromagnetic resonance. A beam-forming controller may cause electromagnetic energy to be transmitted at select electromagnetic frequencies to cause a select subset of the sub-wavelength transducer elements to generate acoustic emissions according to a selectable acoustic transmission pattern. A common port may facilitate electromagnetic communication with each of the sub-wavelength transducer elements.
Abstract:
Methods and systems for monitoring compliance of a patient with a prescribed treatment regimen are described. Patient activity is detected unobtrusively with an activity sensor at the patient location, and activity data is transmitted to a monitoring location. Patient speech detected during use of a communication system such as a mobile telephone by the patient may also be used as an activity signal. Patient activity and/or speech is processed at the patient location or monitoring location to identify activity parameters or patterns that indicate whether the patient has complied with the prescribed treatment regimen. The activity sensor and other components at the patient location may be incorporated into, or associated with, a cell phone, computing system, game system, or vehicle system, for example. The system may provide a report to an interested party, for example a medical care provider or insurance company, regarding patient compliance with the prescribed treatment regimen.
Abstract:
A device and methods are disclosed herein for fluid removal during wound treatment or for removal or dialysis of components from blood or tissue. A device is disclosed that includes a multilayer membrane including a plurality of layers; an electroactive polymer within each layer; and a controller operably connected to sequentially activate the electroactive polymer to alter one or more sizes of the plurality of the variably-sized pores within one or more layers of the multilayer membrane. A device is disclosed that includes a multilayer membrane including a plurality of layers; an actuator operably attached to the plurality of layers of the multilayer membrane; and a controller operably activating the actuator to alter a relative lateral position of the two or more layers of the multilayer membrane to align two or more of the plurality of pores within the plurality of layers of the multilayer membrane.
Abstract:
Breast implants including sensor modules and related methods are described herein. Breast implants include those with: a shell configured to be substantially filled with a viscous material; and a plurality of sensor modules attached to the shell and positioned at a distance from each other, each of the plurality of sensor modules oriented to detect one or more analytes in a fluid adjacent to the shell, wherein each of the plurality of sensor modules includes a unique identifier and is configured to utilize energy transmitted from an external source.
Abstract:
An acoustic transducer system for ultrasonic imaging may include an array of sub-wavelength ultrasonic transducer elements; at least one electromagnetically resonant element with an electromagnetic resonance within the electromagnetic frequency band coupled to each of the sub-wavelength ultrasonic transducer elements; at least one electromagnetically resonant element with an electromagnetic resonance within the electromagnetic frequency band coupled to each of the sub wavelength ultrasonic transducer elements; an electromagnetic transmission module configured to modify one or more characteristics of transmitted electromagnetic energy to effectuate an acoustic emission by the array of sub-wavelength transducer elements according to an acoustic transmission pattern corresponding to the respective electromagnetic resonance characteristics of at least some of the electromagnetically resonant elements coupled to the sub-wavelength ultrasonic transducer elements; and a common port configured to facilitate electromagnetic communication with each of the electromagnetically resonant elements coupled to the sub-wavelength transducer elements.
Abstract:
Methods and systems are described for monitoring patient speech to determine compliance of the patient with a prescribed regimen for treating for a brain-related disorder. Patient speech is detected with an audio sensor at the patient location, and speech data is transmitted to a monitoring location. The audio sensor and other components at the patient location may be incorporated into, or associated with, a cell phone, computing system, or stand-alone microprocessor-based device, for example. Patient speech is processed at the patient location and/or monitoring location to identify speech parameters and/or patterns that indicate whether the patient has complied with the prescribed treatment regimen. Patient identity may be determined through biometric identification or other authentication techniques. The system may provide a report to an interested party, for example a medical care provider, based on whether (and/or the extent to which) the patient has complied with the prescribed treatment regimen.
Abstract:
Systems and methods are described herein for guided injection, which include: one or more controllable light-emitting elements configured to emit non-destructive light and a computing device operably connected to the one or more controllable light-emitting elements configured to emit non-destructive light, the computing device including a processor operable to receive at least one digital representation of a body region of an individual, the body region of the individual including one or more physical registration landmarks, the at least one digital representation including one or more digitally registered injection sites and one or more digital registration landmarks corresponding to the one or more physical registration landmarks on the body region; and control the one or more controllable light-emitting elements to illuminate a location of a surface of the body region of the individual corresponding in location to at least one of the one or more digitally registered injection sites.
Abstract:
Artificial joint prosthetic components including synovial fluid deflection structures are described. Embodiments of artificial joint prosthesis include those with: a bone-facing surface of a artificial joint prosthesis, the bone-facing surface configured to face a bone-prosthesis interface in vivo; a non-contact surface of the artificial joint prosthesis; and at least one fluid deflection structure positioned on the non-contact surface, the fluid deflection structure positioned to deflect synovial fluid away from the bone-prosthesis interface in vivo.
Abstract:
Methods and systems for monitoring compliance of a patient with a prescribed treatment regimen are described. Patient speech is detected during use of a communication system such as a mobile telephone and analyzed to determine compliance with a treatment for a brain-related disorder, for example. Speech data representing one or more patient speech pattern and an identity signal containing information used to determine presence/identity of the patient are transmitted from a circuitry-based system at the patient location to a monitoring location. Identity of the patient as user of the communication system is determined through, e.g., biometric or authentication techniques. Speech data is analyzed to determine whether a patient speech pattern matches one or more characteristic speech patterns. Outcome of the analysis is reported to a medical caregiver or other party, for example.
Abstract:
Breast implants including sensor modules and related methods are described herein. Breast implants include those with: a shell configured to be substantially filled with a viscous material; a plurality of projections extending from an external surface of the shell, the projections forming a plurality of compartments adjacent to the external surface of the shell; at least one fluid-permeable cover attached to the projections, the cover completely enveloping the shell and the plurality of projections; and a plurality of sensor modules attached to the shell and positioned at a distance from each other, each of the sensor modules oriented to detect one or more analytes in a fluid within one of the plurality of compartments, wherein each of the plurality of sensor modules includes a unique identifier and is configured to utilize energy transmitted from an external source.