Abstract:
This invention relates to a homogenous process for making a vinyl terminated propylene polymer, wherein the process comprises: contacting, propylene, under polymerization conditions, with a catalyst system comprising an activator and at least one metallocene compound, where the metallocene compound is represented by the formula: where: M is hafnium or zirconium; each X is, independently, selected from the group consisting of hydrocarbyl radicals having from 1 to 20 carbon atoms, hydrides, amides, alkoxides, sulfides, phosphides, halides, dienes, amines, phosphines, ethers, and a combination thereof, (two X's may form a part of a fused ring or a ring system); each R1 is, independently, a C1 to C10 alkyl group; each R2 is, independently, a C1 to C10 alkyl group; each R3 is, independently, hydrogen; each R4, R5, and R6, is, independently, hydrogen or a substituted or unsubstituted hydrocarbyl group, a heteroatom or heteroatom containing group; T is a bridging group; each R7 is, independently, hydrogen, halogen, or a C1 to C20 hydrocarbyl, and two R7 can form a cyclic structure including aromatic, partially saturated, or saturated cyclic or fused ring system; and further provided that any of adjacent R4, R5, and R6 groups may form a fused ring or multicenter fused ring system where the rings may be aromatic, partially saturated or saturated.
Abstract:
This invention relates to a process for polymerization, comprising (i) contacting, at a temperature greater than 35° C., one or more monomers comprising ethylene and/or propylene, with a catalyst system comprising a metallocene catalyst compound and an activator, (ii) converting at least 50 mol % of the monomer to polyolefin; and (iii) obtaining a branched polyolefin having greater than 50% allyl chain ends, relative to total unsaturated chain ends. The invention also relates to the branched polyolefins and functionalized branched polyolefins.
Abstract:
This invention relates to higher olefin vinyl terminated polymers having an Mn of at least 200 g/mol (measured by 1H NMR) including of one or more C4 to C40 higher olefin derived units, where the higher olefin vinyl terminated polymer comprises substantially no propylene derived units; and wherein the higher olefin polymer has at least 5% allyl chain ends and processes for the production thereof. These vinyl terminated higher olefin polymers may optionally include ethylene derived units.
Abstract:
The present disclosure relates to asymmetric ansa-metallocene catalyst compounds that include at least one indenyl ligand substituted at the 3-position with a C3-C40 α-branched alkyl, such as 1-methylethyl, 1-methylpropyl, 1-methylbutyl, 1-ethylbutyl, 1,3-dimethylbutyl, 1-methyl-1-ethylbutyl, 1,1-diethylbutyl, 1-propylpentyl, and the like. Catalyst systems prepared with the catalyst compounds, polymerization methods using such catalyst systems, and polyolefins made using the polymerization methods are also described.
Abstract:
Provided are methods for making a polypropylene composition having a first polypropylene and second polypropylene, and compositions made therefrom. Also provided are bimodal polypropylene compositions having desirable flexural modulus and shear thinning properties.
Abstract:
Disclosed is a method of forming a thermoplastic polyolefin composition, and the TPO itself, comprising discrete α-olefin copolymer domains within a continuous phase of polypropylene comprising combining within the range from 8 wt % to 60 wt % of the α-olefin copolymer, by weight of the thermoplastic polyolefin, and within the range from 92 wt % to 40 wt % of the polypropylene by weight of the thermoplastic polyolefin, wherein the complex viscosity of the α-olefin copolymer (CVα-olefin) and polypropylene (CVPP) satisfy the formula 0.2≦CVα-olefin/CVPP≦5 when the CVs are measured at the same frequency and temperature.
Abstract:
Described herein is a comb-star poly(siloxane-polyolefin) comprising the reaction product of at least vinyl-terminated macromer and functional-poly(dialkylsiloxanes) comprising 2 or more functional groups, wherein the comb-star poly(siloxane-polyolefin) has the following features: a g′(vis avg) of less than 0.80; a comb number of 2 or 3 or 4 to 30 or 40 or 50 or 100 or more; and a number average molecular weight (Mn) within the range of from 25,000 g/mole to 500,000 g/mole.
Abstract:
Disclosed is a method of functionalizing a vinyl terminated polyolefin, the method comprising combining a vinyl terminated polyolefin and a α,β-unsaturated carbonyl compound at a temperature of at least 150° C. and a pressure of at least 14 psi, forming a functionalized polyolefin. The functionalized polyolefin comprises a compound or mixture of compounds represented the formula: wherein each R1 is, independently, selected from hydrogen and C1 to C4 or C10 alkyls; n is an integer from 2 to 800; and each X is, independently, a functional group derived from the α,β-unsaturated carbonyl compound.
Abstract:
Disclosed herein is an in-reactor produced multi-component copolymer comprises a semi-crystalline component having a crystallinity of 20% or more, and an amorphous component having a crystallinity of 5% or less. The copolymer comprises at least 80 wt % of units derived from propylene and from about 1 to about 20 wt % of units derived from at least one C6 to C12 alpha-olefin. The copolymer has a viscosity at 190° C. of at least 530 mPa sec and a heat of fusion between about 10 and about 70 J/g. An adhesive containing the copolymer exhibits a good balance of adhesive properties and mechanical strength.
Abstract:
This invention relates to higher olefin vinyl terminated polymers having an Mn of at least 200 g/mol (measured by 1H NMR) including of one or more C4 to C40 higher olefin derived units, where the higher olefin vinyl terminated polymer comprises substantially no propylene derived units; and wherein the higher olefin polymer has at least 5% allyl chain ends and processes for the production thereof. These vinyl terminated higher olefin polymers may optionally include ethylene derived units.