Abstract:
The present disclosure relates to a protective coating composition for a hard surface, wherein the composition comprises an organic solvent and a polysiloxane having the general formula (I), wherein: R1, R2, R3, R4, R5, R6, R7 and R8 are independently an alkyl group having from 1 to 8 carbon atoms; Y and Z are independently a divalent linking group selected from the group consisting of urea, urethane, oxygen atom, sulfur atom and alkylene having from 1 to 8 carbon atoms; A, B, L and M are independently a divalent slinking group selected from the group consisting of alkylene having from 1 to 8 carbon atoms, with the proviso that if the combined linking groups formed by -A-Y-L- and -M-Z—B— are independently an alkylene, then the alkylene is independently different from ethylene; n is an integer from 5 to 1500; and m and p are independently an integer from 1 to 3. In another aspect, the present disclosure is directed to a method of reducing contamination from a hard surface.
Abstract:
An ultrahigh-strength SiO2 aerogel with alternately configured soft chains and hard cores, and a method for preparing same are provided. According to the present invention, firstly, octa-olefin functionalized silsesquioxane and a mercapto silane coupling agent are dissolved in an organic solvent under a protective gas to perform a catalytic reaction, and then the reaction system is dried to obtain a white powder; secondly, the white powder is dissolved in an alcohol solution, the mixture is stirred until the white powder is completely dissolved, and then an acid-catalyzed hydrolysis reaction and a heat-induced gelation reaction under an alkaline environment are performed to obtain a wet gel; and finally, the gel is subjected to aging, surface modification, displacement and vacuum lyophilization to obtain the ultrahigh-strength SiO2 aerogel with alternately configured soft chains and hard cores.
Abstract:
Disclosed herein are compositions and fluidic devices that include a filler fluid having a siloxane block co-polymer solubilized in the filler fluid. Also disclosed herein are related kits and methods for using the fluidic devices for various uses, such as the polymerase chain reaction or preparations for sequencing reactions.
Abstract:
The invention provides a hydrophilized polydiorganosiloxane vinylic crosslinker which comprises (1) a polydiorganosiloxane polymer chain comprising dimethylsiloxane units and hydrophilized siloxane units each having one methyl substituent and one monovalent C4-C40 organic radical substituent having two to six hydroxyl groups, wherein the molar ratio of the hydrophilized siloxane units to the dimethylsiloxane units is from about 0.035 to about 0.15, and (2) two terminal (meth)acryloyl groups. The hydrophilized polydiorganosiloxane vinylic crosslinker has a number average molecular weight of from about 3000 Daltons to about 80,000 Daltons. The present invention is also related to a silicone hydrogel contact lens, which comprises repeating units derived from a hydrophilized polydiorganosiloxane vinylic crosslinker of the invention.
Abstract:
The invention provides a chain-extended polydiorganosiloxane vinylic crosslinker which comprises (1) a polymer chain comprising at least two polydiorganosiloxane segments and one hydrophilized linker between each pair of polydiorganosiloxane segements, wherein each polydiorganosiloxane comprises at least 5 dimethylsiloxane units in a consecutive sequence, wherein the hydrophilized linker is a divalent radical having at least two (meth)acrylamide moieties; (2) two terminal (meth)acryloyl groups, wherein the chain-extended polydiorganosiloxane vinylic crosslinker has an average molecular weight of at least about 1500 Daltons. The present invention is also related to a silicone hydrogel contact lens, which comprises repeating units derived from a chain-extended polydiorganosiloxane vinylic crosslinker of the invention. In addition, the invention provides a method for making silicone hydrogel contact lenses using a lens-forming formulation comprising a chain-extended polydiorganosiloxane vinylic crosslinker of the invention.
Abstract:
The present invention is a curable composition comprising a component (A), a component (B), a component (C), and a component (D), the curable composition comprising the component (A) and the component (B) in a mass ratio (component (A):component (B)) of 100:0.3 to 100:20, the component (A) being a silane compound (co)polymer that is represented by a formula (a-1) or a formula (a-2), (CHR1X0-D-SiO3/2)m(R2SiO3/2)n(CHR1X0-D-SiZ1O2/2)o(R2SiZ2O2/2)p(CHR1X0-D-SiZ32O1/2)q(R2SiZ42O1/2)r (a-1) (R3SiO3/2)s(R3SiZ5O2/2)t(R3SiZ52O1/2)u (a-2) the component (B) being fine particles having an average primary particle size of more than 0.04 μm and 8 μm or less, the component (C) being a silane coupling agent that comprises a nitrogen atom in its molecule, and the component (D) being a silane coupling agent that comprises an acid anhydride structure in its molecule, and an optical element-securing composition, and a cured product, and an optical element-securing material, and a method for using the curable composition, and an optical device.
Abstract:
Described herein is a comb-star poly(siloxane-polyolefin) comprising the reaction product of at least vinyl-terminated macromer and functional-poly(dialkylsiloxanes) comprising 2 or more functional groups, wherein the comb-star poly(siloxane-polyolefin) has the following features: a g′(vis avg) of less than 0.80; a comb number of 2 or 3 or 4 to 30 or 40 or 50 or 100 or more; and a number average molecular weight (Mn) within the range of from 25,000 g/mole to 500,000 g/mole.
Abstract:
A semiconductor device can be prepared using a precursor dielectric composition that comprises: (1) a photochemically or thermally crosslinked product of a photocurable or thermally curable thiosulfate-containing polymer that has a Tg of at least 50° C. and that comprises: an organic polymer backbone comprising (a) recurring units comprising pendant thiosulfate groups; and further comprises charge balancing cations, and (2) optionally, an electron-accepting photo sensitizer component. The electronic device can be prepared by independently applying the precursor dielectric composition and an organic semiconductor composition to a substrate to form an applied precursor dielectric composition and an applied organic semiconductor composition, respectively, and subjecting the applied precursor dielectric composition to curing conditions to form a gate dielectric layer that is in physical contact with the applied organic semiconductor composition.
Abstract:
A compound has at least three functionalities, including a first functionality (a) that is a sulfonate group or a sulfate group of the formula —(O)d—SO3M with d=0 or 1 and with M=hydrogen or a monovalent metal cation or a corresponding portion of a multivalent metal cation; a second functionality (b) that is a (meth)acryl residue; and a third functionality (c) that is a carboxylic acid function and/or a thioether group. When the compound is free of silicon, the sulfonate or sulfate group and the (meth)acryl residue are separated from each other by a hydrocarbon-containing residue having a carbon chain. The carbon chain is interrupted by S or NH, or the carbon chain contains a linking group, selected from C(O)NH, NHC(O), NR8C(O), NHC(O)O, NR8C(O)O, NHC(O)NH, C(O)NHC(O) and —C(O)S—, wherein R8 is alkyl or alkenyl or a (meth)acryl group.
Abstract:
The invention relates to a compound, comprising at least three functionalities, that is (a) a sulfonate or sulfate group of the formula —(O)d—SO3M with d=0 or 1 and M=hydrogen or a monovalent metal cation or the corresponding fraction of a polyvalent metal cation, (b) a (meth)acryl group, and (c) either (c1) at least one further (meth)acryl group or an inorganically condensable group, and/or (c2) a further carboxylic acid function, and/or (c3) a function which increases the refractive index of a material produced from the compounds, that is a thioether group, with the proviso that a sulfonate or sulfate group and a (meth)acrylate group are separated from one another in a silicon-free compound via a hydrocarbon-containing group, the carbon chain of which is either interrupted by O, S or NH or contains a linking group.