Abstract:
A method interactively displays panoramic images of a scene. The method includes measuring 3D coordinates of the scene with a 3D measuring instrument at a first position and a second position. The 3D coordinates are registering into a common frame of reference. Within the scene, a trajectory includes a plurality of trajectory points. Along the trajectory, 2D images are generated from the commonly registered 3D coordinates. A trajectory display mode sequentially displays a collection of 2D images at the trajectory points. A rotational display mode allows a user to select a desired view direction at a given trajectory point. The user selects the trajectory display mode or the rotational display mode and sees the result shown on the display device.
Abstract:
A method interactively displays panoramic images of a scene. The method includes measuring 3D coordinates of the scene with a 3D measuring instrument at a first position and a second position. The 3D coordinates are registering into a common frame of reference. Within the scene, a trajectory includes a plurality of trajectory points. Along the trajectory, 2D images are generated from the commonly registered 3D coordinates. A trajectory display mode sequentially displays a collection of 2D images at the trajectory points. A rotational display mode allows a user to select a desired view direction at a given trajectory point. The user selects the trajectory display mode or the rotational display mode and sees the result shown on the display device.
Abstract:
A method interactively displays panoramic images of a scene. The method includes measuring 3D coordinates of the scene with a 3D measuring instrument at a first position and a second position. The 3D coordinates are registering into a common frame of reference. Within the scene, a trajectory includes a plurality of trajectory points. Along the trajectory, 2D images are generated from the commonly registered 3D coordinates. A trajectory display mode sequentially displays a collection of 2D images at the trajectory points. A rotational display mode allows a user to select a desired view direction at a given trajectory point. The user selects the trajectory display mode or the rotational display mode and sees the result shown on the display device.
Abstract:
A method for automatically generating a three-dimensional (3D) video of a scene by measuring and registering 3D coordinates at a first position and a second position of a 3D measuring device, the 3D video generated by combining two-dimensional images extracted at trajectory points along a trajectory path.
Abstract:
A method for optically scanning and measuring an environment using a 3D measurement device is provided. The method includes steps that are performed prior to operation. These steps include positioning a near-field communication (NFC) device adjacent the 3D measurement device. An NFC link is established between the NFC device and the 3D measurement device. An identifier is transmitted from the NFC device to the 3D measurement device. It is determined that the NFC device is authorized to communicate with the 3D measurement device based at least in part on the identifier. Commands are transferred to the 3D measurement device from the NFC device based at least in part on determining the first NFC device is authorized. At least one communication path is activated. The 3D measurement device is connected to a network of computers and measurement data is transmitted from the 3D measurement device to the network of computers.
Abstract:
A laser scanner includes a light emitter that generates a modulated light beam for measuring distance and red, blue, and green lights for capturing colors. The beam is collimated and directed to an object point with a steering mirror. Reflected light from the object point is directed by the steering mirror onto scanner optics. The reflected light is directed to an optical receiver that sends the first light in a first path and the second, third and fourth lights in a second path to a color receiver. The first light is demodulated to determine distance to the target. The second, third, and fourth lights are separated and measured to determine three color values. The color values are combined with the measured distance value to determine a color 3D coordinate for the object point.
Abstract:
A laser scanner device for optically scanning and measuring an environment includes a base, a measuring head which is rotatable relative to the base, and a mirror which is rotatably relative to the measuring head, wherein, in at least one operating mode, the laser scanner is mounted on a cart by a mounting device, the cart moves the base which is fixedly connected with the mounting device, the measuring head rests relative to the base, the mirror rotates, and the measuring head is locked with the mounting device by a locking mechanism.
Abstract:
A method for measuring and registering three-dimensional (3D) coordinates by measuring 3D coordinates with a 3D scanner in a first registration position, measuring two-dimensional (2D) coordinates with a 2D scanner while moving from the first registration position to a second registration position, measuring 3D coordinates with the 3D scanner at the second registration position, and determining a correspondence among targets in the first and second registration positions while moving between the second registration position and a third registration position.
Abstract:
A 3D measurement device sends a beam of light to a point on an object, receives the reflected light, and determines a distance and two angles to the point, one of the angles measured by an angular encoder, which includes a disk having incremental marks and an index mark. Light from the 3D device is rotated to reflect light from a reference reflector to produce a first synchronization signal. A first difference angle is determined based on counts of the incremental marks and on the first synchronization signal. Light from the 3D device is rotated to reflect light from the reference reflector to produce a second synchronization signal. A second difference angle is determined based on counts of the incremental marks and on the second synchronization signal. The reference correction value of the index mark is determined based on the first and second difference angles.
Abstract:
A laser scanner and method of operation to determine the consistency of a registration is provided. The method includes generating with the laser scanner at least a first scan of the scene with first measuring points. The laser scanner generates at least one second scan of the scene with second measuring points. At least one measured distance is determined from at least one of the second measuring points to the center of the second scan. The second scan is provisionally registered subjected to a consistency check. The consistency check is performed. At least one virtual distance is determined from at least one of the first measuring points to the center of the second scan. The consistency check is based at least in part on comparing the at least one virtual distance with the at least one measured distance.