Abstract:
An insulated-gate field-effect transistor (100) provided along an upper surface of a semiconductor body contains a pair of source/drain zones (240 and 242) laterally separated by a channel zone (244). A gate electrode (262) overlies a gate dielectric layer (260) above the channel zone. Each source/drain zone includes a main portion (240M or 242M) and a more lightly doped lateral extension (240E or 242E) laterally continuous with the main portion and extending laterally under the gate electrode. The lateral extensions, which terminate the channel zone along the upper semiconductor surface, are respectively largely defined by a pair of semiconductor dopants of different atomic weights. With the transistor being an asymmetric device, the source/drain zones constitute a source and a drain. The lateral extension of the source is defined with dopant of higher atomic weight than the lateral extension of the drain.
Abstract:
A semiconductor structure is provided with (i) an empty well having relatively little well dopant near the top of the well and (ii) a filled well having considerably more well dopant near the top of the well. Each well is defined by a corresponding body-material region (108 or 308) of a selected conductivity type. The regions respectively meet overlying zones (104 and 304) of the opposite conductivity type. The concentration of well dopant of the selected conductivity type locally reaches a maximum in each body-material region at a location no more than 10 times deeper below the upper semiconductor surface than the overlying zone's depth, decreases by at least a factor of 10 in moving from the empty-well maximum-concentration location through the overlying zone to the upper surface, and reaches at least one other maximum in moving from the filled-well maximum-concentration location through the other zone to the upper surface.
Abstract:
An insulated-gate field-effect transistor (500, 510, 530, or 540) has a hypoabrupt step-change vertical dopant profile below one (104 or 564) of its source/drain zones for reducing the parasitic capacitance along the pn junction between that source/drain zone and adjoining body material (108 or 568). In particular, the concentration of semiconductor dopant which defines the conductivity type of the body material largely undergoes a step increase by at least a factor of 10 in moving from that source/drain zone down to an underlying body-material location no more than 10 times deeper below the upper semiconductor surface than that source/drain zone.
Abstract:
A group of high-performance like-polarity insulated-gate field-effect transistors (100, 108, 112, 116, 120, and 124 or 102, 110, 114, 118, 122, and 126) have selectably different configurations of lateral source/drain extensions, halo pockets, and gate dielectric thicknesses suitable for a semiconductor fabrication platform that provides a wide variety of transistors for analog and/or digital applications. Each transistor has a pair of source/drain zones, a gate dielectric layer, and a gate electrode. Each source/drain zone includes a main portion and a more lightly doped lateral extension. The lateral extension of one of the source/drain zones of one of the transistors is more heavily doped or/and extends less deeply below the upper semiconductor surface than the lateral extension of one of the source/drain zones of another of the transistors.
Abstract:
A semiconductor technology combines a normally off n-channel channel-junction insulated-gate field-effect transistor (“IGFET”) (104) and an n-channel surface-channel IGFET (100 or 160) to reduce low-frequency 1/f noise. The channel-junction IGFET is normally of materially greater gate dielectric thickness than the surface-channel IGFET so as to operate across a greater voltage range than the surface-channel IGFET. Alternatively or additionally, the channel-junction IGFET may conduct current through a field-induced surface channel. A p-channel surface-channel IGFET (102 or 162), which is typically of approximately the same gate-dielectric thickness as the n-channel surface-channel IGFET, is preferably combined with the two n-channel IGFETs to produce a complementary-IGFET structure. A further p-channel IGFET (106, 180, 184, or 192), which is typically of approximately the same gate dielectric thickness as the n-channel channel-junction IGFET, is also preferably included. The further p-channel IGFET can be a surface-channel or channel-junction device.
Abstract:
Power MOSFET apparatus, and method for its production, that suppresses voltage breakdown near the gate, using a polygon-shaped trench in which the gate is positioned, using a shaped deep body junction that partly lies below the trench bottom, and using special procedures for growth of gate oxide at various trench corners.
Abstract:
An asymmetric insulated-gate field-effect transistor (40) is configured in an asymmetric lightly doped drain structure that alleviates hot-carrier effects and enables the source characteristics to be decoupled from the drain characteristics. The transistor has a multi-part channel formed with an output portion (46), which adjoins the drain zone, and a more heavily doped input portion (42), which adjoins the source zone (44). The drain zone contains a main portion (52) and a more lightly doped extension (50) that meets the output channel portion. The drain extension extends at least as far below the upper semiconductor surface as the main drain portion so as to help reduce hot-carrier effects. The input channel portion is situated in a threshold body zone (53) whose doping determines the threshold voltage. The provision of a lightly doped source extension is avoided so that improving the drain characteristics does not harm the source characteristics, and vice versa.
Abstract:
A unique approach to suppressing latchup in CMOS structures is described. Atomic species that exhibit midgap levels in silicon and satisfy the criteria for localized action and electrical compatibility can be implanted to suppress the parasitic bipolar behavior which causes latchup. Reduction of minority carrier lifetime can be achieved in critical parasitic bipolar regions that, by CMOS construction are outside the regions of active MOS devices. One way to accomplish this goal is to use the source/drain masks to locally implant the minority carrier lifetime reducer (MCLR) before the source/drain dopants are implanted. This permits the MCLR to be introduced at different depths or even to be different species, of the n and p-channel transistors. Another way to accomplish this goal requires that a blanket MCLR implant be done very early in the process, before isolation oxidation, gate oxidation or active threshold implants are done.
Abstract:
An insulated-gate field-effect transistor (220U) utilizes an empty-well region for achieving high performance. The concentration of the body dopant reaches a maximum at a subsurface location no more than 10 times deeper below the upper semiconductor surface than the depth of one of a pair of source/drain zones (262 and 264), decreases by at least a factor of 10 in moving from the subsurface location along a selected vertical line (136U) through that source/drain zone to the upper semiconductor surface, and has a logarithm that decreases substantially monotonically and substantially inflectionlessly in moving from the subsurface location along the vertical line to that source/drain zone. Each source/drain zone has a main portion (262M or 264M) and a more lightly doped lateral extension (262E or 264E). Alternatively or additionally, a more heavily doped pocket portion (280) of the body material extends along one of the source/drain zones.
Abstract:
The buffer breakdown of a group III-N HEMT on a p-type Si substrate is significantly increased by forming an n-well in the p-type Si substrate to lie directly below the metal drain region of the group III-N HEMT. The n-well forms a p-n junction which becomes reverse biased during breakdown, thereby increasing the buffer breakdown by the reverse-biased breakdown voltage of the p-n junction and allowing the substrate to be grounded. The buffer layer of a group III-N HEMT can also be implanted with n-type and p-type dopants which are aligned with the p-n junction to minimize any leakage currents at the junction between the substrate and the buffer layer.