Abstract:
Methods and systems for releasing growth factors are disclosed. In certain embodiments, a blood sample is exposed to a sequence of one or more electric pulses to trigger release of a growth factor in the sample. In certain embodiments, the growth factor release is not accompanied by clotting within the blood sample.
Abstract:
A pulse generation system for applying electric pulses across a load includes a first plurality of energy storage modules connected in series on a positive chain and configured to apply a positive potential to the load and a second plurality of energy storage modules connected in series on a negative chain and configured to apply a negative potential to the load. Each energy storage module of the positive chain and the negative chain includes a rectifier and a storage element, and at least one control element.
Abstract:
Apparatus and methods to control an electron beam of an x-ray tube are provided. One apparatus includes at least one of (i) a first switching unit having a voltage source and a pair of switches connected in series and configured to switch between open and closed positions to change an output voltage to engage or bypass the voltage source or (ii) a second switching unit connected to a voltage source and having a first pair of switches connected in series and a second pair of switches connected in series, wherein the first and second pair of switches are connected in parallel, and wherein the first and second pairs of switches are configured to switch between open and closed position to change an output voltage generated from the voltage source. The first and second switching units are connected in series and a third switching unit provided that is amplitude controllable.
Abstract:
A pulse generation system for applying electric pulses across a load includes a first plurality of energy storage modules connected in series on a positive chain and configured to apply a positive potential to the load and a second plurality of energy storage modules connected in series on a negative chain and configured to apply a negative potential to the load. Each energy storage module of the positive chain and the negative chain includes a rectifier and a storage element, and at least one control element.
Abstract:
In accordance with the present disclosure, exposure of a sample to one or more electric pulses via capacitive coupling is described. In certain embodiments, the sample may be a biological sample to be treated or modified using the pulsed electric fields. In certain embodiments, the electric pulses may be delivered to a load using capacitive coupling. In other embodiments, the electric pulses may be bipolar pulses.
Abstract:
Methods and systems for releasing growth factors are disclosed. In certain embodiments, a blood sample is exposed to a sequence of one or more electric pulses to trigger release of a growth factor in the sample. In certain embodiments, the growth factor release is not accompanied by clotting within the blood sample.
Abstract:
A system may be provided that may include an integrated motor drive configured to couple to a motor. The integrated motor drive may include a first converter that may be configured to electrically couple with a winding assembly of the motor. The first converter may include at least first conversion circuitry configured to form a first electrical excitation waveform and second conversion circuitry coupled in parallel to the second conversion circuitry and configured to form a second electrical excitation waveform. The first converter may also include a first transformer configured to form a first summation electrical excitation waveform from the first electrical excitation waveform and the second electrical excitation waveform that drives the motor.
Abstract:
In accordance with the present disclosure, ultrasound-based techniques using a combined scanning and treatment array module are employed to find and treat anomalies corresponding to bleed events. By way of example, ultrasound data may be acquired with a scanning array at one or more locations on a patient anatomy. A treatment array may deliver heat to a targeted anomaly to provide therapy. Such a technique may be useful outside of a hospital environment.
Abstract:
Methods and systems for generating a tunable or customizable activated product composition are related. In certain embodiments, one or more of electric pulse parameters, flow rate, or sample container size are varied so as to generate the activated product composition. The activated product composition may be customized or optimized based for a particular patient or procedure.
Abstract:
A voltage divider circuit assembly includes resistors, an external electrostatic shield, and internal electrostatic shield(s). The resistors are in series with each other between input terminals that receive an input voltage. An external resistor is disposed between sensing terminals that conduct an output voltage that is the input voltage divided by the resistors in the series. The external shield is conductively coupled with the series of the resistors with the external resistor disposed outside of the external shield and the other resistor(s) inside the external shield. The internal shield(s) are conductively coupled with the resistors and disposed inside the external shield. A first internal resistor is disposed inside the external shield and outside of the internal shield(s). One or more remaining resistors are inside the internal shield(s). The shields divide parasitic capacitances to enable the measurement of dynamically changing high voltage input signals.