Abstract:
Approaches for providing a substrate having a planar metrology pad adjacent a set of fins of a fin field effect transistor (FinFET) device are disclosed. Specifically, the FinFET device comprises a finned substrate, and a planar metrology pad formed on the substrate adjacent the fins in a metrology measurement area of the FinFET device. Processing steps include forming a first hardmask over the substrate, forming a photoresist over a portion of the first hardmask in the metrology measurement area of the FinFET device, removing the first hardmask in an area adjacent the metrology measurement area remaining exposed following formation of the photoresist, patterning a set of openings in the substrate to form the set of fins in the FinFET device in the area adjacent the metrology measurement area, depositing an oxide layer over the FinFET device, and planarizing the FinFET device to form the planar metrology pad in the metrology measurement area.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a fin structure overlying a semiconductor substrate. The fin structure defines a fin axis extending in a longitudinal direction perpendicular to a lateral direction and has two fin sidewalls parallel to the fin axis. The method includes forming gate structures overlying the fin structure and transverse to the fin axis. Further, the method includes growing an epitaxial material on the fin structure and confining growth of the epitaxial material in the lateral direction.
Abstract:
A method of manufacturing a semiconductor device including a replacement metal gate process incorporating a conductive dummy gate layer (e.g., silicon germanium (SiGe), titanium nitride, etc.) and a related are disclosed. The method includes forming an oxide layer on a substrate; removing a gate portion of the oxide layer from the substrate in a first region of the semiconductor device; forming a conductive dummy gate layer on the semiconductor device in the first region; and forming a gate on the semiconductor device, the gate including a gate conductor disposed in the first region and directly connected to the substrate.