Abstract:
A selective catalytic reduction (SCR) device monitoring system includes an engine out NOx monitoring module, an SCR out NOx monitoring module configured and disposed to monitor NOx released from the SCR device, and a NOx storage model module operatively connected to the engine out NOx module and the SCR out NOx monitoring module. The NOx storage model module is configured and disposed to determine an amount of NOx stored in the SCR device. A consumed ammonia correction model module is operatively coupled to the NOx storage model module and configured and disposed to calculate a corrected consumed ammonia prediction factor.
Abstract translation:选择性催化还原(SCR)装置监测系统包括发动机排出NOx监测模块,SCR排出NOx监测模块,其配置和设置为监测从SCR装置释放的NOx;以及NOx存储模型模块,其可操作地连接到发动机出口NOx模块 和SCR out NOx监测模块。 NOx存储模型模块被配置和设置以确定存储在SCR装置中的NOx的量。 消耗的氨校正模型模块可操作地耦合到NOx存储模型模块,并且被配置和设置为计算经校正的消耗氨预测因子。
Abstract:
A method of estimating a total amount of soot in a diesel particulate filter includes monitoring a pressure differential across the diesel particulate filter; monitoring an engine speed and an engine load from an engine in fluid communication with the diesel particulate filter; determining a first soot mass estimate from the monitored pressure differential, the first soot mass estimate having an associated confidence indicator based on the monitored engine speed and engine load; determining a second soot mass estimate from the monitored engine speed and engine load; and outputting the first soot mass estimate if the confidence indicator is above a predetermined threshold, and outputting the second soot mass estimate if the confidence indicator is below the predetermined threshold.
Abstract:
A method for engine-out soot flow rate prediction of an exhaust gas treatment system is provided. A measured level of oxides of nitrogen in the exhaust gas treatment system is received. An engine fuel injection timing and air-fuel ratio of an engine producing the oxides of nitrogen are also received. An engine timing factor is determined based on the engine fuel injection timing. An engine air-fuel ratio factor is determined based on the engine air-fuel ratio. An engine-out soot flow rate prediction is generated based on the measured level of oxides of nitrogen, the engine timing factor, and the engine air-fuel ratio factor.
Abstract:
Methods and systems provided for determining a phase state and/or for determining a degree of subcooling in a fluid. An exemplary method for operating a refrigeration cycle includes flowing a refrigerant through a metering device and calculating a pressure differential of the refrigerant across the metering device. Further, the method includes determining whether the refrigerant is a saturated liquid based on the pressure differential. The method includes, when the refrigerant is not a saturated liquid, cooling the refrigerant upstream of the metering device.
Abstract:
Systems and methods are provided for management of a thermal system. A system for thermal management includes a thermal system with fluid conduits. A sensor is disposed to monitor an input parameter state of the thermal system. An actuator is configured to vary a flow in the fluid conduits. A controller is configured to receive a signal representative of the input parameter state; process an actuator state through a flow model of the thermal system to obtain an existing flow in the fluid conduits; process the existing flow through a thermal model of the thermal system to determine an input that reduces an error between a desired parameter state and the input parameter state; process the input through an inverse flow model to convert the input to a desired actuator state; and position the actuator in the desired actuator state.
Abstract:
Systems and methods are provided for determining a temperature of a thermal system that includes fluid conduits. A sensor monitors a current state of the temperature. A controller receives a signal from the sensor that is representative of the current state; determines a flow in the fluid conduits; determines a noise covariance of the thermal system; processes a thermal model of the thermal system; predicts a next-step state of the parameter at a time after the current state; and corrects the next-step state based, at least in-part, on the noise covariance resulting in a corrected next-step state.
Abstract:
Technical methods described herein include an emissions control system for treating exhaust gas from an internal combustion engine in a motor vehicle. The emissions control system includes a three-reaction oxygen storage model. The system further includes a three-way catalyst and a controller that controls an oxygen storage level for the three-way catalyst. The controller determines a first reaction rate representing a net rate of cerium oxidation by oxygen, a second reaction rate representing a net rate of cerium reduction by carbon monoxide, and a third reaction rate representing a net rate of cerium reduction by hydrogen. The controller further determines the oxygen storage level based on the first reaction rate, the second reaction rate, and the third reaction rate.
Abstract:
An exhaust aftertreatment system including a selective catalytic reduction device (SCR), a NOx sensor and a reductant injection system is described. A method for controlling the reductant injection system to inject reductant into the exhaust gas feedstream upstream relative to the SCR includes monitoring engine operation, and determining an initial reductant dosing rate responsive to the engine operation. A dosing perturbation is induced in the reductant dosing rate. The exhaust gas feedstream is monitored via the NOx sensor, and a reductant dosing correction term is determined based upon the monitoring. A final dosing rate for controlling the reductant injection system is determined based upon the initial reductant dosing rate, the dosing perturbation, and the reductant dosing correction term.
Abstract:
A method of estimating a mass flow rate of nitrogen oxides in exhaust gas includes sensing a mass flow rate of a flow of exhaust gas from the engine. A nitrogen oxides base concentration for when the engine is operating at a reference state is defined, and a nitrogen oxides ratio for a current operating state of the internal combustion engine is calculated. The mass flow rate of the flow of exhaust gas, the nitrogen oxides base concentration, and the nitrogen oxides ratio for the current operating state of the engine are multiplied together to define an estimated value of the current mass flow rate of nitrogen oxides in the flow of exhaust gas from the engine. The estimated value of the mass flow rate of nitrogen oxides may be compared to the output from a nitrogen oxides sensor to determine proper functionality of the nitrogen oxides sensor.
Abstract:
An exhaust treatment system to treat exhaust gas includes a particulate filter configured to trap soot contained in the exhaust gas, and a pressure sensor that outputs a pressure signal indicative of a pressure differential of the particulate filter. A soot mass module is configured to determine a soot mass indicative of an amount of soot stored in the particulate filter based on the pressure differential. The soot mass is selectively determined according to a first soot model or a second soot model. An adaptation soot load module corrects the first soot model based on the second soot model such that the first soot model is adapted to the second soot model. A frequency regeneration module determines an actual rate at which the first soot model is corrected. The frequency regeneration module further determines the particulate filter is excessively regenerated based on the actual rate and a threshold.