Abstract:
Embodiments of the present disclosure describe systems, devices, and methods for wireless local area network alarm notifications in cellular networks. Various embodiments may include an integration reference point agent in an element manager that receives an alarm notification according to a first format from an access point, converts the alarm notification to a second format, and send the converted alarm notification to an integration reference point manager. Other embodiments may be described or claimed.
Abstract:
Embodiments described herein relate generally to a communication between an element manager and a wireless local area network (WLAN) access point (AP). The WLAN AP may be configured with one or more counters. The one or more counters may measure events, such as data transmission and/or reception at the WLAN AP or statistics based on association of user equipment (UE) with the WLAN AP. The element manager may be configured to read one or more of these counters and compute one or more values based on the values read from the one or more counters. The element manager may be configured to communicate the one or more computed values to a network manager. Other embodiments may be described and/or claimed.
Abstract:
A method and system for managing inter-cell interference for a plurality of neighboring wireless communication cells in a wireless network is disclosed. Power data indicative of a received power level for a signal from the base station for any user equipment in an outer region of a cell is determined by a base station for each of a plurality of neighboring cells. Number data indicating at least one of a number and a relative number of user equipments within the outer region of a cell is also determined by each base station from the timing of a signal between the base station and the user equipment. The power data and the number data is transmitted to a central manager, where the power data and the number data for the cells is processed to compute a power level in each of a plurality of sub-bands for transmission by each base station. The computed power level in each sub-band is transmitted back to each base station for the control of the power level transmitted by the base station in each sub-band.
Abstract:
The present disclosure provides systems for instantiating and terminating a MME VNF. The MME VNF is instantiated and/or terminated using an EM, a NM, a VNFM, a VIM, a NFVO and/or a catalog. Instantiating an MME VNF includes on-boarding the VNF package, creating a managed element, executing the enabled VNF package, instantiating the MME VNF instance, creating the MME function and modifying the MME pool to add the MME VNF instance. Terminating the MME VNF includes decommissioning the MME VNF services, modifying the MME pool to remove the MME VNF from the MME pool, and terminating the MME VNF instance.
Abstract:
Embodiments use the principles of self-organizing networks to allocate resources to allow spectrum owners to share spectrum with wireless carriers according to defined license conditions. A spectrum licensee holds the licensing conditions of the spectrum licensed by the spectrum owners. This licensed spectrum is referred to as secondary spectrum. A self-organizing network server requests access to secondary spectrum. The spectrum licensee grants access to the secondary spectrum along with the licensing conditions for access. The self-organizing network server monitors the conditions associated with the license and/or delegates the responsibility for monitoring conditions associated with the license to others. When the license conditions are met, enhanced Node B systems may begin using the secondary spectrum according to the license conditions. When the license conditions are no longer met, enhanced Node B systems discontinue use of the secondary spectrum.
Abstract:
In one embodiment, the present disclosure provides a self-optimizing network (SON) coordination module that includes a conflict detection module configured to receive operational information from at least one capacity and coverage optimization (CCO) module and at least one of an energy savings management (ESM) and/or a cell outage compensation (COC) module, wherein the at least one CCO module and the at least one of the ESM module and/or the COC module are associated with at least one eNodeB (eNB) in communication with the conflict detection module. The conflict detection module is configured to determine a conflict between operational information of the CCO module and at least one of the ESM module and/or the COC module. The SON coordination module also includes a conflict resolution module configured to resolve a conflict between the operational information of the CCO module and at least one of the ESM module and/or the COC module based on, at least in part, one or more conflict resolution rules.
Abstract:
An element manager (EM) of a virtualized network for a wireless communication system processes a suspend measurement job request received from a network manager (NM). The request is to suspend a measurement job to provide network function (NF) performance measurements related to a virtualized resource (VR). In response to the suspend measurement job request, the EM stops reports reporting measurement result data for the measurement job and determines whether to instruct a virtualized network function manager (VNFM) to delete one or more performance management (PM) jobs used to support the measurement job. The EM then generates a suspend measurement job response to indicate to the NM a result of the request to suspend the measurement job.
Abstract:
Embodiments described herein relate generally to a communication between an element manager and a wireless local area network (WLAN) access point (AP). The WLAN AP may be configured with one or more counters. The one or more counters may measure events, such as data transmission and/or reception at the WLAN AP or a carrier sense multiple access with collision avoidance (CSMA/CA) procedure by the WLAN AP. The element manager may be configured to read one or more of these counters and compute one or more values based on the values read from the one or more counters. The element manager may be configured to communicate the one or more computed values to a network manager. Other embodiments may be described and/or claimed.
Abstract:
The present disclosure provides systems for instantiating and terminating a MME VNF. The MME VNF is instantiated and/or terminated using an EM, a NM, a VNFM, a VIM, a NFVO and/or a catalog. Instantiating an MME VNF includes on-boarding the VNF package, creating a managed element, executing the enabled VNF package, instantiating the MME VNF instance, creating the MME function and modifying the MME pool to add the MME VNF instance. Terminating the MME VNF includes decommissioning the MME VNF services, modifying the MME pool to remove the MME VNF from the MME pool, and terminating the MME VNF instance.
Abstract:
Embodiments use the principles of self-organizing networks to allocate resources to allow spectrum owners to share spectrum with wireless carriers according to defined license conditions. A spectrum licensee holds the licensing conditions of the spectrum licensed by the spectrum owners. This licensed spectrum is referred to as secondary spectrum. A self-organizing network server requests access to secondary spectrum. The spectrum licensee grants access to the secondary spectrum along with the licensing conditions for access. The self-organizing network server monitors the conditions associated with the license and/or delegates the responsibility for monitoring conditions associated with the license to others. When the license conditions are met, enhanced Node B systems may begin using the secondary spectrum according to the license conditions. When the license conditions are no longer met, enhanced Node B systems discontinue use of the secondary spectrum.