Abstract:
A measurement system includes a speed plus sensor and a control unit. The speed plus sensor is configured to detect a magnetic field in response to speed and resonance characteristics. The speed plus sensor is also configured to generate a sensor output signal having speed data and enhanced resonance data. The control unit is configured to receive the sensor output signal.
Abstract:
The present disclosure relate to an indirect tire pressure monitoring system (TPMS). In some embodiments, the indirect TPMS has magnetic field sensor that detects a modulated magnetic field indicative of one or more resonance parameters of an automobile tire. The magnetic field sensor generates a modulated sensor signal based upon the modulated magnetic field. An analog-to-digital converter (ADC) converts the modulated sensor signal to a digital sensor signal, which is provided to a digital signal processing unit that perform analysis of the digital sensor signal to determine the one or more resonance parameters. A communication interface transmit data corresponding to the one or more resonance parameters to an electronic control unit (ECU).
Abstract:
The present disclosure relate to an indirect tire pressure monitoring system (TPMS). In some embodiments, the indirect TPMS has magnetic field sensor that detects a modulated magnetic field indicative of one or more resonance parameters of an automobile tire. The magnetic field sensor generates a modulated sensor signal based upon the modulated magnetic field. An analog-to-digital converter (ADC) converts the modulated sensor signal to a digital sensor signal, which is provided to a digital signal processing unit that perform analysis of the digital sensor signal to determine the one or more resonance parameters. A communication interface transmit data corresponding to the one or more resonance parameters to an electronic control unit (ECU).
Abstract:
In an embodiment, a device comprises a circuit with at least one circuit element; measurement circuitry capable to test a state of the at least one circuit element during an operation of the circuit, the measurement circuitry comprising a first terminal configured to be coupled to a first node of the circuit via a first capacitor, a second terminal configured to be coupled to a second node of the circuit, wherein the measurement circuitry is configured to determine in situ an operating state of the at least one circuit element based on signals applied by the measurement circuitry to the circuit during the operation of the circuit.
Abstract:
A method for calibrating a magnetic angle sensor includes measuring, for a plurality of angle positions within a 360° rotation of a measurement object, in each case a first sensor signal for a first magnetic field component and a second sensor signal for a second magnetic field component orthogonal to the first magnetic field component, wherein the first and second sensor signals are in each case 360° periodic and representable as a Fourier series with a Fourier component of a fundamental and a Fourier component of a harmonic; determining the Fourier component of the harmonic for the first and second sensor signals based on a difference between a trajectory defined by the measured first and second sensor signals and a circular path; and correcting the angle positions based on the Fourier component of the harmonic determined for the first and second sensor signals.
Abstract:
A sensor device includes an output driver configured to: adjust a first time interval of the output signal between a first signal edge of a first type and a first signal edge of a second type based on a first reference value; adjust a second time interval of the output signal between the first signal edge of the second type and a second signal edge of the first type based on a second reference value; adjust a third time interval of the output signal between the second signal edge of the first type and a second signal edge of the second type based on a first data value; and adjust a fourth time interval of the output signal between the second signal edge of the second type and a third signal edge of the first type based on a second data value.
Abstract:
A sigma delta (SD) pulse-width modulation (PWM) loop includes a loop filter implementing a linear transfer function to generate a loop filter signal, wherein the loop filter is configured to receive an input signal and a first feedback signal and generate the loop filter signal based on the input signal, the first feedback signal, and the linear transfer function; and a hysteresis comparator coupled to an output of the loop filter, the hysteresis comparator configured to receive the loop filter signal and generate a sigma delta PWM signal based on the loop filter signal, wherein the first feedback signal is derived from the sigma delta PWM signal.
Abstract:
A position sensor system comprises a magnetic strip extending in a readout direction and comprising magnetic poles alternating at a constant pitch along the readout direction. At least a first differential magnetoresistive sensor comprises magnetoresistive sensing elements spaced at the pitch. The magnetic poles of the magnetic strip and the first differential magnetoresistive sensor are movable with respect to each other in the readout direction.
Abstract:
By a relative movement between an arrangement of at least three magnetic field sensors and a magnetic field generator, different discrete positional relationships can be produced between the same. A first signal is calculated as a first linear combination using at least two of three sensor signals. It is checked whether the first signal uniquely indicates one of the different discrete positional relationships. If yes, it is determined that the arrangement is located in the one discrete positional relationship. If no, a second signal is calculated as a second linear combination using at least two of the three sensor signals, at least one of which differs from the sensor signals used in the calculation of the first signal, and at least the second signal is used to determine in which of the different discrete positional relationships the arrangement is located relative to the magnetic field generator.
Abstract:
Some described techniques address issues of latency and lengthy processing times associated with conventional redundant sensor measurement systems that rely upon digital transmission protocols by implementing a diverse analog sensor interface architecture. Additional described techniques provide a redundant signaling solution to achieve signaling diversity using a combination of analog and digital sensor interface architectures. The described architectures may advantageously use a number of sensor measurement paths that may be independent of one another or share any suitable number of common components to provide varying levels of redundancy. When redundant analog sensor interface architectures are implemented, the analog interfaces may also provide signal diversity with respect to the use of different types of analog transmission protocols, which may include different signaling interfaces (e.g. differential versus single-ended), different transmission interfaces (e.g. voltage versus current interfaces), and/or the use of different signalization schemes.